分析 由2sinBsinC=1+cosA及和差角的三角函数公式可得B=C,再由2sinAsinC=cosB可得A-C=$\frac{π}{2}$或A-C=-$\frac{π}{2}$,由三角形的内角和可解得A,结合题意可得答案.
解答 解:∵在△ABC中2sinBsinC=1+cosA,
∴2sinBsinC=1-cos(B+C)=1-cosBcosC+sinBsinC,
∴sinBsinC+cosBcosC=1,即cos(B-C)=1,
∴结合三角形角的范围可得B=C,
又∵在△ABC中2sinAsinC=cosB,
∴2sinAsinC=-cos(A+C)=sinAsinC-cosAcosC,
∴sinAsinC+cosAcosC=0,即cos(A-C)=0,
∴A-C=$\frac{π}{2}$或A-C=-$\frac{π}{2}$,
当A-C=$\frac{π}{2}$时,结合B=C和A+B+C=π可解得A=$\frac{2π}{3}$,
故cosA=-$\frac{1}{2}$,∴m=2,n=-1,故m+n=1;
当A-C=-$\frac{π}{2}$时,结合B=C和A+B+C=π可解得A=0,不合题意.
故答案为:1
点评 本题考查解三角形,涉及两角和与差的三角函数和分类讨论的思想,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | -1或1 | D. | -1或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 |
| 利润y | 5.8 | 6.6 | 7.1 | 7.4 | 8.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com