精英家教网 > 高中数学 > 题目详情
20.已知直线l,m的方向向量分别是$\overrightarrow{a}$=(1,1,0),$\overrightarrow{b}$=(-1,t,2),若l⊥m,则实数t的值是1.

分析 由直线l与直线m垂直,得直线l,m的方向向量数量积为0,由此能求出结果.

解答 解:∵直线l,m的方向向量分别是$\overrightarrow{a}$=(1,1,0),$\overrightarrow{b}$=(-1,t,2),l⊥m,
∴$\overrightarrow{a}•\overrightarrow{b}$=-1+t=0,
解得t=1.
故答案为:1.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若两函数y=x+a与y=$\sqrt{1-2{x}^{2}}$的图象有两个交点A、B、O是坐标原点,当△OAB是直角三角形时,则满足条件的所有实数a的值的乘积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}中,a3=2,a6=5,则数列{${2}^{{a}_{n}}$}的前5项和等于(  )
A.15B.31C.63D.127

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从2,3,4,5,6这5个数字中任取3个,则所得3个数之和为偶数的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,四棱锥P-ABCD中,ABCD是正方形,侧棱PA⊥底面ABCD,PA=AB,M、N分别是PC、PD的中点,则异面直线BM与CN所成的角大小为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.arccos$\frac{\sqrt{2}}{3}$D.π-arccos$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在股票买卖过程中,经常用两种曲线来描述价格变化情况:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(3)=4表示开始交易后第3小时的即时价格为4元;g(3)=2表示开始交易后三个小时内所有成交股票的平均价格为2元.下面给出四个图象,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知acosB-(2c-b)cosA=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:cosα≠0是α≠2kπ(k∈Z)的充分必要条件,
命题q:设随机变量ζ~N(0,1),若P(ξ≥$\frac{3}{2}$)=m,则P(-$\frac{3}{2}$<ξ<0)=$\frac{1}{2}$-m,
下列命题是假命题的为(  )
A.p∧qB.p∨qC.¬p∧qD.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的前n项和Sn满足S3=6,S5=15.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{a_n}{{{2^{a_n}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案