精英家教网 > 高中数学 > 题目详情

【题目】如图几何体中,等边三角形所在平面垂直于矩形所在平面,又知//.

(1)若的中点为在线段上,//平面,求

(2)若平面与平面所成二面角的余弦值为,求直线与平面所成角的正弦值;

(3)若中点为,求在平面上的正投影。

【答案】(1);(2);(3)在平面上的正投影为.

【解析】

(1)的中点,可得四点共面,从而可证得,即得,即可得解;

(2)设的中点为,可证得两两垂直,设,分别以轴建立空间直角坐标系,利用法向量计算二面角列方程可得,从而再利用空间向量建立线面角的公式求解即可;

(3)由平面,可证得,再通过勾股定理在中,可证得,进而可找到在平面上的正投影为.

(1)设的中点,连接,因为

所以四点共面,

又因为平面,平面平面

所以

所以.

(2)设的中点为的中点为连接因为为等边三角形,所以

又因为平面平面,平面平面

所以

,分别以轴建立空间直角坐标系,则

为平面的法向量,

;得

所以.

同理得平面的法向量

所以

所以

又因为,所以

(3)由(2)知易证:平面,所以

又因为,所以

又因为在中,

所以

所以平面,所以在平面上的正投影为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b= ,求△ABC面积的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ))的一条对称轴为x= ,一个对称中心为( ,0),在区间[0, ]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2sin(2x+ ),若将它的图象向右平移 个单位,得到函数g(x)的图象,则函数g(x)图象的一条对称轴的方程为(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的实数m的值为(

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1,则直线BC1与平面A1BD所成的角的余弦值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,
(1)求a,b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆: (a>b>0),左右焦点分别是F1 , F2 , 焦距为2c,若直线 与椭圆交于M点,满足∠MF1F2=2∠MF2F1 , 则离心率是(
A.
B. -1
C.
D.

查看答案和解析>>

同步练习册答案