【题目】定义在R上的奇函数f(x),当x≥0时,
f(x)= ,
则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1
【答案】A
【解析】解:∵当x≥0时,
f(x)=;
即x∈[0,1)时,f(x)=(x+1)∈(﹣1,0];
x∈[1,3]时,f(x)=x﹣2∈[﹣1,1];
x∈(3,+∞)时,f(x)=4﹣x∈(﹣∞,﹣1);
画出x≥0时f(x)的图象,
再利用奇函数的对称性,画出x<0时f(x)的图象,如图所示;
则直线y=a,与y=f(x)的图象有5个交点,则方程f(x)﹣a=0共有五个实根,
最左边两根之和为﹣6,最右边两根之和为6,
∵x∈(﹣1,0)时,﹣x∈(0,1),
∴f(﹣x)=(﹣x+1),
又f(﹣x)=﹣f(x),
∴f(x)=﹣(﹣x+1)=(1﹣x)﹣1=log2(1﹣x),
∴中间的一个根满足log2(1﹣x)=a,即1﹣x=2a ,
解得x=1﹣2a ,
∴所有根的和为1﹣2a .
故选:A.
函数F(x)=f(x)﹣a(0<a<1)的零点转化为:在同一坐标系内y=f(x),y=a的图象交点的横坐标.
作出两函数图象,考查交点个数,结合方程思想,及零点的对称性,根据奇函数f(x)在x≥0时的解析式,作出函数的图象,结合图象及其对称性,求出答案.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断并证明函数的奇偶性;
(2)判断当时函数的单调性,并用定义证明;
(3)若定义域为,解不等式.
【答案】(1)奇函数(2)增函数(3)
【解析】试题分析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。(2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-1,1)为单调函数,
原不等式变形为f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。
试题解析:(1)函数为奇函数.证明如下:
定义域为
又
为奇函数
(2)函数在(-1,1)为单调函数.证明如下:
任取,则
,
即
故在(-1,1)上为增函数
(3)由(1)、(2)可得
则
解得:
所以,原不等式的解集为
【点睛】
(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。
【题型】解答题
【结束】
22
【题目】已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点P在△ABC的BC边所在的直线上从左到右运动,设△ABP与△ACP的外接圆面积之比为λ,当点P不与B,C重合时,( )
A.λ先变小再变大
B.当M为线段BC中点时,λ最大
C.λ先变大再变小
D.λ是一个定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知A,B,C为直角坐标系xOy中的三个定点
(Ⅰ)若点D为□ABCD的第四个顶点,求||;
(Ⅱ)若点P在直线OC上,且·=4,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知单位圆x2+y2=1与x轴正半轴交于点P,当圆上一动点Q从P出发沿逆时针方向旋转一周回到P点后停止运动设OQ扫过的扇形对应的圆心角为xrad,当0<x<2π时,设圆心O到直线PQ的距离为y,y与x的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式
(Ⅰ)写出程序框图中①②处的函数关系式;
(Ⅱ)若输出的y值为2,求点Q的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设y=f(t)是某港口水的深度y(米)关于时间t(小时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 12 | 14.9 | 11.9 | 9 | 12.1 |
经长期观察,函数y=f(t)的图象可以近似地看成函数的图象.⑴求的解析式;⑵设水深不小于米时,轮船才能进出港口。某轮船在一昼夜内要进港口靠岸办事,然后再出港。问该轮船最多能在港口停靠多长时间?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①分类变量A与B的随机变量K2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=1, =1, =3,
则a=1.正确的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当时,函数的值域是_________.
【答案】[-1,2]
【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),
∵﹣≤x≤,
∴﹣≤x+≤,
∴﹣≤sin(x+)≤1,
∴函数f(x)的值域为[﹣1,2],
故答案为:[﹣1,2].
【题型】填空题
【结束】
15
【题目】若点O在内,且满足,设为的面积, 为的面积,则=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com