精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
x
+lnx-1.
(1)求f(x)的单调区间.
(2)若a>0,求函数f(x)在区间(0,e]上的最小值;
(3)若0<a<e,g(x)=-
2e
x
-lnx.?x1∈(0,e],x2∈(0,e],使g(x1)=f(x2),求a的取值范围.
分析:(1)利用导数的运算法则得到f′(x),通过对a分类讨论即可得出其单调性;
(2)利用(1)通过对a分类讨论即可得出其最小值.
(3)利用导数分别得到函数g(x)的最大值及f(x)的最小值,必须满足g(x)max≥f(x)min,解出即可.
解答:解:(1)∵函数f(x)=
a
x
+lnx-1,(x>0),∴f(x)=-
a
x2
+
1
x
=
x-a
x2

①当a≤0时,f′(x)>0,∴函数f(x)在区间(0,+∞)上单调递增;
②当a>0时,当x>a时,f′(x)>0,函数f(x)单调递增;当0<x<a时,f′(x)<0,函数f(x)单调递减.
(2)①若a≥e,由(1)可知:函数f(x)在区间(0,e]上单调递减,因此当x=e时,函数f(x)取得最小值f(e)=
a
e

②若0<a<e,由(1)可知:函数f(x)在区间(0,a)上单调递减,在区间(a,e)上单调递增,因此当x=a时,函数f(x)取得极小值,即最小值f(a)=lna.
(3)∵当0<x≤e时,∴g(x)=
2e
x2
-
1
x
=
2e-x
x2
>0,∴g(x)在区间(0,e]上单调递增,∴g(x)≤g(e)=-3.
由(2)可知:对于函数f(x),当0<x≤e,0<a<e时,函数f(x)取得最小值f(a)=lna.
因此要使?x1∈(0,e],x2∈(0,e],使g(x1)=f(x2),则必须g(x)max≥f(x)min,即-3≥lna,
解得0<a<
1
e3

∴a的取值范围是(0,
1
e3
)
点评:熟练掌握利用导数研究函数的单调性、极值及其最值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案