分析 (1)求出抛物线焦点的坐标为(0,1),设椭圆方程为$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1\;({a>b>0})$,求出a,b,c,即可求解椭圆方程.
(2)若直线l与x轴重合,求出以AB为直径的圆的方程,若直线l垂直于x轴,则以AB为直径的圆是${({x+\frac{1}{3}})^2}+{y^2}=\frac{16}{9}$,联立两个圆的方程,得到切点坐标,然后证明:当直线l垂直于x轴时,以AB为直径的圆过点T(1,0),若直线l不垂直于x轴,可设直线l:$y=k({x+\frac{1}{3}})$设点A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,通过韦达定理以及$\overrightarrow{TA}•\overrightarrow{TB}$=0,推出$\overrightarrow{TA}⊥\overrightarrow{TB}$,得到结果.
解答 解:(1)抛物线焦点的坐标为(0,1),则椭圆C的焦点在y轴上
设椭圆方程为$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1\;({a>b>0})$
由题意可得c=1,$a=\sqrt{2}$,$b=\sqrt{{a^2}-{c^2}}=1$,
∴椭圆方程为$\frac{y^2}{2}+{x^2}=1$…(3分)
(2)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,
若直线l垂直于x轴,则以AB为直径的圆是${({x+\frac{1}{3}})^2}+{y^2}=\frac{16}{9}$
由$\left\{\begin{array}{l}{x^2}+{y^2}=1\\{({x+\frac{1}{3}})^2}+{y^2}=\frac{16}{9}\end{array}\right.⇒\left\{\begin{array}{l}x=1\\ y=0\end{array}\right.$即两圆相切于点(1,0)…(5分)
因此所求的点T如果存在,只能是(1,0),事实上,点T(1,0)就是所求的点.…(6分)
证明:当直线l垂直于x轴时,以AB为直径的圆过点T(1,0),若直线l不垂直于x轴,
可设直线l:$y=k({x+\frac{1}{3}})$设点A(x1,y1),B(x2,y2)
由$\left\{\begin{array}{l}y=k({x+\frac{1}{3}})\\{x^2}+\frac{y^2}{2}=1\end{array}\right.$$⇒({{k^2}+2}){x^2}+\frac{2}{3}{k^2}x+\frac{1}{9}{k^2}-2=0$,∴$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{-\frac{2}{3}{k^2}}}{{{k^2}+2}}\\{x_1}{x_2}=\frac{{\frac{1}{9}{k^2}-2}}{{{k^2}+2}}\end{array}\right.$…(9分)
又∵$\overrightarrow{TA}$=(x1-1,y1),$\overrightarrow{TB}$=(x2-1,y2),
∴$\overrightarrow{TA}•\overrightarrow{TB}$=(x1-1,y1)•(x2-1,y2)=$({x_1}-1)({x_2}-1)+{k^2}({x_1}+\frac{1}{3})({x_2}+\frac{1}{3})$=$(1+{k^2}){x_1}{x_2}+(\frac{1}{3}{k^2}-1)({x_1}+{x_2})+(1+\frac{1}{9}{k^2})$=$(1+{k^2})\frac{{\frac{1}{9}{k^2}-2}}{{{k^2}+2}}+(\frac{1}{3}{k^2}-1)\frac{{-\frac{2}{3}{k^2}}}{{{k^2}+2}}+(1+\frac{1}{9}{k^2})$=0…(11分)
∴$\overrightarrow{TA}⊥\overrightarrow{TB}$即:TA⊥TB,故以AB为直径的圆恒过点T(1,0).
综上可知:在坐标平面上存在一个定点T(1,0)满足条件.…(12分)
点评 本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,圆的位置关系的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{5}{8}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,\frac{{3-\sqrt{5}}}{2}})$和$({\frac{{3+\sqrt{5}}}{2},+∞})$ | B. | $({\frac{{3-\sqrt{5}}}{2},\frac{{3+\sqrt{5}}}{2}})$ | ||
| C. | $({-∞,3-\sqrt{5}})$和 $({3+\sqrt{5},+∞})$ | D. | $({3-\sqrt{5},3+\sqrt{5}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com