精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$.
(1)求函数y=f(x)的周期和单调递增区间.
(2)若△ABC的三角A,B,C所对的三边分别为a,b,c,且满足(a-c)(a+c)=b(b-c),试求f(B)的取值范围.

分析 (1)利用二倍角和诱导公式以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)根据(a-c)(a+c)=b(b-c),求出C的值,利用三角函数的有界限即可求f(B)的取值范围.

解答 解 函数$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$.
化简可得:f(x)=2sin2x+$\sqrt{3}$cosxsinx+cos2x=1-cos2x+$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}+\frac{1}{2}$cos2x=$\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{3}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{3}{2}$.
(1)∴函数f(x)的周期T=$\frac{2π}{2}=π$.
由$-\frac{π}{2}+2kπ≤$2x-$\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$,
∴函数f(x)的单调递增区间为[:$-\frac{π}{6}+kπ$,$\frac{π}{3}+kπ$],k∈Z.
(2)f(x)=sin(2x-$\frac{π}{6}$)+$\frac{3}{2}$.
∴f(B)=sin(2B-$\frac{π}{6}$)+$\frac{3}{2}$.
由(a-c)(a+c)=b(b-c),即a2-c2=b2-bc.
由余弦定理,可得:cosA=$\frac{1}{2}$,
0<A<π,
∴A=$\frac{π}{3}$.
那么:$0<B<\frac{2π}{3}$.
2B-$\frac{π}{6}$∈($-\frac{π}{6}$,$\frac{7π}{6}$)
∴sin(2B-$\frac{π}{6}$)∈($-\frac{1}{2}$,1].
∴f(B)的取值范围是(1,$\frac{5}{2}$].

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知z=(a-2)+(a+1)i在复平面内对应的点在第二象限,则实数a的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC中,角A,B,C所对的边分别为a,b,c,已知c=$\sqrt{7}$,C=$\frac{π}{3}$,
(Ⅰ)若2sinA=3sinB,求a,b;
(Ⅱ)若cosB=$\frac{5\sqrt{7}}{14}$,求sin2A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列三句话按三段论的模式排列顺序正确的是(  )
①2018能被2整除; 
②一切偶数都能被2整除; 
③2018是偶数.
A.①②③B.②①③C.②③①D.③②①

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆N的圆心为(3,4),其半径长等于两平行线$(a-2)x+y+\sqrt{2}=0$,$ax+3y+2\sqrt{2}a=0$间的距离.
(1)求圆N的方程;
(2)点B(3,-2)与点C关于直线x=-1对称,求以C为圆心且与圆N外切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现有四分之一圆形的纸板(如图),∠AOB=90°,圆半径为1,要裁剪成四边形OAPB,且满足AP∥OB,∠OAB=30°,∠POA=θ,记此四边形OAPB的面积为f(θ),求f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,\sqrt{3}sin2x)$,$\overrightarrow b=(cosx,1)$,x∈R.
(1)求函数y=f(x)的周期和单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,$a=\sqrt{7}$,且sinB=2sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量X表示所抽取的3株高度在[80,90)内的株数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=loga(8-ax)满足:对任意x1,x2∈(0,2](x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0,则实数a的取值范围是(  )
A.(0,1)B.(1,4)C.(1,4]D.(4,+∞)

查看答案和解析>>

同步练习册答案