精英家教网 > 高中数学 > 题目详情
17.若函数f(x)=loga(8-ax)满足:对任意x1,x2∈(0,2](x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0,则实数a的取值范围是(  )
A.(0,1)B.(1,4)C.(1,4]D.(4,+∞)

分析 根据导数的定义及导数与函数单调性的关系,可知先将函数f(x)在(0,2]单调递减,f(x)=loga(8-ax)转化为y=logat,t=8-ax,两个基本函数,再利用复合函数的单调性求解.

解答 解:由(x1-x2)[f(x1)-f(x2)]<0,即(x1-x2)和[f(x1)-f(x2)]异号,则$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
∴函数f′(x)=$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则f(x)在(0,2]单调递减,
当0<a<1时,则函y=logat,在(0,2]是减函数,
由题设知t=8-ax为增函数,则需a<0,故此时无解;
若a>1,则y=logat,在(0,2]是增函数,则t为减函数,
则需a>0且8-a×2>0,解得1<a<4,
综上可得实数a 的取值范围是(1,4).
故实数a的取值范围(1,4).
故选:B.

点评 本题考查复合函数的单调性,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数的范围,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$.
(1)求函数y=f(x)的周期和单调递增区间.
(2)若△ABC的三角A,B,C所对的三边分别为a,b,c,且满足(a-c)(a+c)=b(b-c),试求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设α、β∈(0,$\frac{π}{2}$),试用柯西不等式证明 $\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等差数列{an}的前n项和为Sn,a1<0且$\frac{{a}_{6}}{{a}_{5}}$=$\frac{8}{11}$,则当Sn取最小值时,n的值为(  )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,D是BC上的点,AD平分∠BAC,△ABD的面积是△ADC面积的两倍,则$\frac{sin∠B}{sin∠C}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将4名学生分别安排甲、乙、丙三个地方参加实践活动,每个地方至少安排一名学生,则不同的安排方案共有(  )
A.12B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若存在$x∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.实数x,y满足$\frac{x^2}{16}+\frac{y^2}{9}=1$,则z=x+y的取值范围是[-5,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,AP=AB=AC=a,$AD=\sqrt{2}a$,PA⊥底面ABCD.
(1)求证:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一点E,使得二面角B-AE-D的平面角的余弦值为$-\frac{{\sqrt{6}}}{3}$?若存在,求出$λ=\frac{CE}{CP}$的值?若不存在,说明理由.

查看答案和解析>>

同步练习册答案