精英家教网 > 高中数学 > 题目详情
6.实数x,y满足$\frac{x^2}{16}+\frac{y^2}{9}=1$,则z=x+y的取值范围是[-5,5].

分析 通过椭圆方程与直线方程,联立,利用判别式转化求解即可.

解答 解:实数x,y满足$\frac{x^2}{16}+\frac{y^2}{9}=1$,则z=x+y,
可得$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1}\\{y=z-x}\end{array}\right.$,消去y可得:25x2-32zx+16z2-144=0,
△=(-32z)2-4×25×(16z2-144)≥0,解得z∈[-5,5].
故答案为:[-5,5].

点评 本题考查直线与椭圆的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量X表示所抽取的3株高度在[80,90)内的株数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=loga(8-ax)满足:对任意x1,x2∈(0,2](x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0,则实数a的取值范围是(  )
A.(0,1)B.(1,4)C.(1,4]D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,已知某次射中,则随后一次射中的概率是(  )
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合U={1,2,3,4,5},从集合U中选4个数,组成没有重复数字的四位数,并且此四位数大于2345,同时小于4351,则满足条件的四位数共有54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,已知${a_1}=\frac{2}{3}$,a2=1,2an=3an-1-an-2(n≥3).
(1)求a3的值;
(2)证明:数列{an-an-1}(n≥2)是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为${S_n}={2^{n+1}}-2$.
(1)求数列{an}的通项公式;
(2)设bn=an•log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)若函数f(x)=lnx+asin(1-x)在区间(0,1)上为增函数,求实数a的取值范围;
(2)证明:$\sum_{k=1}^{n}$sin$\frac{1}{(k+1)^{2}}$<ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[0,1]时,|f(x)|≤1,则(a+b)c的最大值为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案