精英家教网 > 高中数学 > 题目详情
11.已知数列{an}中,已知${a_1}=\frac{2}{3}$,a2=1,2an=3an-1-an-2(n≥3).
(1)求a3的值;
(2)证明:数列{an-an-1}(n≥2)是等比数列.

分析 (1)利用已知条件求出a3的值;
(2)化简递推关系式,利用等比数列的定义证明即可.

解答 解:(1)数列{an}中,已知${a_1}=\frac{2}{3}$,a2=1,2an=3an-1-an-2(n≥3).
n=3时,2a3=3a2-a1
解得${a_3}=\frac{7}{6}$.
(2)证明:2an=3an-1-an-2(n≥3).可得2(an-an-1)=an-1-an-2
∵${a_2}-{a_1}=\frac{1}{3}$,
∴an-an-1≠0,
∴$\frac{{{a_n}-{a_{n-1}}}}{{{a_{n-1}}-{a_{n-2}}}}=\frac{1}{2}$,
∴{an-an-1}是以$\frac{1}{3}$为首项$\frac{1}{2}$为公比的等比数列.

点评 本题考查数列的递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$,过左焦点F1的直线交椭圆与A,B两点,则△ABF2的周长为(  )
A.32B.20C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将4名学生分别安排甲、乙、丙三个地方参加实践活动,每个地方至少安排一名学生,则不同的安排方案共有(  )
A.12B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.4男3女站成一排,求满足下列条件的排法共有多少种?
(1)任何两名女生都不相邻,有多少种排法?
(2)男甲不在首位,男乙不在末位,有多少种排法?
(3)男生甲、乙、丙顺序一定,有多少种排法?
(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.实数x,y满足$\frac{x^2}{16}+\frac{y^2}{9}=1$,则z=x+y的取值范围是[-5,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.-2是10与x的等差中项,则x=-14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x2+ln23x-2a(x+3ln3x)+10a2,若存在x0使得$f({x_0})≤\frac{1}{10}$成立,则实数a的值为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{1}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$α-β=\frac{π}{3},tanα-tanβ=3$,则cos(α+β)的值为$\frac{\sqrt{3}}{3}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设随机变量?服从?~N(2,9),若P(?>c+1)=P(?<c-1),则c=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案