精英家教网 > 高中数学 > 题目详情
8.设α、β∈(0,$\frac{π}{2}$),试用柯西不等式证明 $\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$≥9.

分析 由$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$=$\frac{co{s}^{2}β+si{n}^{2}β}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$=$\frac{1}{si{n}^{2}α•si{n}^{2}β}+\frac{1}{si{n}^{2}α•co{s}^{2}β}$,又cos 2α+sin 2αsin 2β+sin 2αcos 2β=1,得到(cos 2α+sin 2αsin 2β+sin 2αcos 2β).($\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•si{n}^{2}β}+\frac{1}{si{n}^{2}α•co{s}^{2}β}$)≥(1+1+1)2=9即可证得结论.

解答 证明:∵$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$=$\frac{co{s}^{2}β+si{n}^{2}β}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$
=$\frac{1}{si{n}^{2}α•si{n}^{2}β}+\frac{1}{si{n}^{2}α•co{s}^{2}β}$,
又cos 2α+sin 2αsin 2β+sin 2αcos 2β=1,
∴(cos 2α+sin 2αsin 2β+sin 2αcos 2β)•
(  $\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•si{n}^{2}β}+\frac{1}{si{n}^{2}α•co{s}^{2}β}$)≥(1+1+1)2=9.
∴$\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$≥9.

点评 本题考查了柯西不等式的证明,考查了计算能力及推理能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.△ABC中,角A,B,C所对的边分别为a,b,c,已知c=$\sqrt{7}$,C=$\frac{π}{3}$,
(Ⅰ)若2sinA=3sinB,求a,b;
(Ⅱ)若cosB=$\frac{5\sqrt{7}}{14}$,求sin2A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,\sqrt{3}sin2x)$,$\overrightarrow b=(cosx,1)$,x∈R.
(1)求函数y=f(x)的周期和单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,$a=\sqrt{7}$,且sinB=2sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量X表示所抽取的3株高度在[80,90)内的株数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.写出下列命题的否定:
(1)?x0∈R,2${\;}^{{x}_{0}}$≤0;    
(2)?x∈R,sinx≤1;    
(3)?x∈R,f(x)≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程($\frac{1}{3}$)x-x=0的解有(  )
A.0个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.实数x、y满足3x2+4y2=12,则z=2x+$\sqrt{3}y$的最小值是(  )
A.-5B.-6C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=loga(8-ax)满足:对任意x1,x2∈(0,2](x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0,则实数a的取值范围是(  )
A.(0,1)B.(1,4)C.(1,4]D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为${S_n}={2^{n+1}}-2$.
(1)求数列{an}的通项公式;
(2)设bn=an•log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案