精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,\sqrt{3}sin2x)$,$\overrightarrow b=(cosx,1)$,x∈R.
(1)求函数y=f(x)的周期和单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,$a=\sqrt{7}$,且sinB=2sinC,求△ABC的面积.

分析 (1)利用向量的数量积以及两角和与差化简函数的解析式,通过正弦函数的单调区间求解即可.
(2)利用(1)函数的解析式求出A,然后利用余弦定理转化求解即可.

解答 解:(1)$f(x)=\overrightarrow a•\overrightarrow b=2{cos^2}x+\sqrt{3}sin2x$=$\sqrt{3}sin2x+cos2x+1=2sin(2x+\frac{π}{6})+1$,
解得$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ$,k∈Z,
函数y=f(x)的单调递增区间是$[{-\frac{π}{3}+kπ,\frac{π}{6}+kπ}]$(k∈Z).
(2)∵f(A)=2,∴$2sin(2A+\frac{π}{6})+1=2$,即$sin(2A+\frac{π}{6})=\frac{1}{2}$,
又∵0<A<π,∴$A=\frac{π}{3}$,
∵$a=\sqrt{7}$,由余弦定理得a2=b2+c2-2bccosA=(b+c)2-3bc=7,①
∵sinB=2sinC,∴b=2c,②由①②得${c^2}=\frac{7}{3}$,
∴${S_{△ABC}}=\frac{{7\sqrt{3}}}{6}$.

点评 本题考查余弦定理以及向量的数量积的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a=7,b=8,c=5,则∠A=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,正确的是(  )
A.对分类变量X与Y,随机变量K2的观测值k0越大,则判断“X与Y相关”的把握程度越小
B.命题p:?x0>0,使得x0-1<lnx0,则¬p是真命题
C.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$<0”是“$\overrightarrow{a}$,$\overrightarrow{b}$夹角为钝角”的充分不必要条件
D.α,β是两个平面,m,n是两条直线,若m⊥n,m⊥α,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$.
(1)求函数y=f(x)的周期和单调递增区间.
(2)若△ABC的三角A,B,C所对的三边分别为a,b,c,且满足(a-c)(a+c)=b(b-c),试求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overline z=1+i$(i是虚数单位),则在复平面内,${z^2}+\frac{2}{z}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$tan(α+4π)=-\frac{4}{3}$,且$α∈(\frac{π}{2},π)$,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}中,a3a7=-16,a4+a6=0,求a1,d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设α、β∈(0,$\frac{π}{2}$),试用柯西不等式证明 $\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若存在$x∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案