精英家教网 > 高中数学 > 题目详情
4.已知$tan(α+4π)=-\frac{4}{3}$,且$α∈(\frac{π}{2},π)$,求sinα,cosα的值.

分析 利用诱导公式化简可得tanα的值,根据同角三角函数关系式可得sinα,cosα的值.

解答 解:由tan(α+4π)=tan α=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,
得sin α=-$\frac{4}{3}$cos α.①
又sin2 α+cos2α=1,②
由①②得$\frac{16}{9}$cos2α+cos2α=1,即cos2α=$\frac{9}{25}$.
又$α∈(\frac{π}{2},π)$,
即α是第二象限角,
∴cos α=-$\frac{3}{5}$,sin α=$\frac{4}{5}$.

点评 本题考查了诱导公式的化简能力及同角三角函数基本关系式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=1,an+1=2an,数列{bn}满足:b1=3,b4=11,且{an+bn}为等差数列.
(I) 求数列{an}和{bn}的通项公式;
(II) 求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列三句话按三段论的模式排列顺序正确的是(  )
①2018能被2整除; 
②一切偶数都能被2整除; 
③2018是偶数.
A.①②③B.②①③C.②③①D.③②①

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现有四分之一圆形的纸板(如图),∠AOB=90°,圆半径为1,要裁剪成四边形OAPB,且满足AP∥OB,∠OAB=30°,∠POA=θ,记此四边形OAPB的面积为f(θ),求f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,\sqrt{3}sin2x)$,$\overrightarrow b=(cosx,1)$,x∈R.
(1)求函数y=f(x)的周期和单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,$a=\sqrt{7}$,且sinB=2sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|2x>1},B={x|x2-3x-4>0},则∁R(A∪B)=(  )
A.{x|x≤0或x>4}B.{x|x<-1或x>4}C.RD.{x|-1≤x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y
(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量X表示所抽取的3株高度在[80,90)内的株数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程($\frac{1}{3}$)x-x=0的解有(  )
A.0个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,已知某次射中,则随后一次射中的概率是(  )
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案