精英家教网 > 高中数学 > 题目详情
18.到两定点F1(-1,0)和F2(1,0)的距离之和为2的点M的轨迹是(  )
A.椭圆B.线段C.D.直线

分析 利用零点的距离与已知条件,判断轨迹即可.

解答 解:两定点F1(-1,0)和F2(1,0)的距离为:2.
到两定点F1(-1,0)和F2(1,0)的距离之和为2的点M的轨迹是线段.
故选:B.

点评 本题考查轨迹方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数,f(x)是定义在R上的奇函数,它的图象关于直线x=1对称,且f(x)=x(0<x≤1).若函数y=f(x)-$\frac{1}{x}$-a在区间[-10,10]上有10个零点(互不相同).则实数a的取值范围是$[-\frac{1}{10},\frac{1}{10}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是定义在R上的偶函数且在[0,+∞)上递增,p:f($\frac{x}{x+1}$)<f(-$\frac{1}{2}$),q:|x-a|<1,若p是q的充分不必要条件,则实数a的取值范围为(  )
A.(0,$\frac{4}{3}$)B.(-∞,0)∪($\frac{4}{3}$,+∞)C.(-∞,0]∪[$\frac{4}{3}$,+∞)D.[0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{a}$=1,且其过点(4,3),求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.条件p:x2-2mx+m2-4>0,条件q:x2-x-2>0.
(1)是否存在m,使p是q充分条件,求出m的范围.
(2)是否存在m,使p是q的必要不充分条件,求出m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数g(x)=$\frac{1}{x+1}$-$\sqrt{x}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=2x-1},B={y|y=x2+x+1},则A∩B=(  )
A.{(0,1),(1,3)}B.RC.(0,+∞)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知过点A(0,2)的直线m与圆O:x2+y2=2相交于P、Q两点.
(1)OP⊥OQ时,求直线m的方程;
(2)若AP=PQ,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=x2+2x+a,若函数y=f(f(x))有且只有2个不同的零点,则实数a的取值范围为$\frac{-1-\sqrt{5}}{2}$<a<$\frac{-1+\sqrt{5}}{2}$或a=1.

查看答案和解析>>

同步练习册答案