精英家教网 > 高中数学 > 题目详情
已知函数f(x)=aInx-ax,(a∈R).
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若a=-1,求证;f(x)≥f(1),且
In2
2
In3
3
In4
4
In2010
2010
1
2010
分析:(1)要求f(x)的单调递增区间,先求出f′(x),大于0得到增区间;小于零得到减区间即可.
(2)因为a=1时f(x)在(1,+∞)递增,f(x)≥f(1)即:Inx≤x-1在(1,+∞)上恒成立,所以Inn≤n-1在n≥2,n∈N*恒成立;
Inn
n
n-1
n
在n≥2,n∈N*恒成立,则ln2<1,ln3<2,ln4<3,…,ln2010<2009,利用不等式的证明方法,约分可得证.
解答:解:(1)依题意得:f′(x)=
-a(x-1)
x
a>0,单调递增区间(0,1);
a<0,单调递增区间(1,+∞);a=0,无增区间.
(2)若a=-1,由(1)得f(x)在(1,+∞)递增,f(x)≥f(1)
即:Inx≤x-1在(1,+∞)上恒成立,
所以Inn≤n-1在n≥2,n∈N*恒成立
Inn
n
n-1
n
在n≥2,n∈N*恒成立
In2
2
In3
3
In4
4
In2010
2010
1
2
2
3
2009
2010
=
1
2010
点评:考查学生利用导数研究函数的单调性的能力,灵活运用不等式的证明方法的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案