精英家教网 > 高中数学 > 题目详情
11.已知i为虚数单位,若复数z满足z+z•i=2,则z的虚部为(  )
A.iB.1C.-iD.-1

分析 利用复数的除法的运算法则化简求解即可.

解答 解:复数z满足z+z•i=2,
可得z=$\frac{2}{1+i}$=1-i.
则z的虚部为-1.
故选:D.

点评 本题考查复数的除法的运算法则,复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=1,且($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=$\frac{3}{4}$.
(1)求|${\overrightarrow b}$|;  
 (2)当$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{4}$时,求向量$\overrightarrow a$与$\overrightarrow a$+2$\overrightarrow b$的夹角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x3-3x-a在(1,2)内有零点,则实数a的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}(φ为参数)}$,直线L:$\left\{{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}(t为参数)}$
(Ⅰ)化C,L的方程为普通方程;
(Ⅱ)求过椭圆C的右焦点且与直线L平行的直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{lnx}{x}$.
(1)求函数f(x)的单调区间;
(2)已知a、b∈R,a>b>e,(其中e是自然对数的底数),求证:ba>ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线y=a与函数f(x)=$\frac{1}{3}$x3-x2-3x+1的图象相切,则实数a的值为(  )
A.-26或$\frac{8}{3}$B.-1或3C.8或-$\frac{8}{3}$D.-8或$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的奇函数f(x),若f(x)的导函数f'(x)满足f'(x)<x2+1,则不等式f(x)<$\frac{1}{3}$x3+x的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,记函数f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期为π.
(1)求ω的值;
(2)解不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.$\frac{8π}{3}$B.32πC.D.8$\sqrt{2}$π

查看答案和解析>>

同步练习册答案