分析 (1)求导数,利用导数的正负,即可求函数f(x)的单调区间;
(2)要证:ba>ab只要证:alnb>blna,只要证$\frac{lnb}{b}>\frac{lna}{a}$,由(1)得函数$f(\begin{array}{l}x\end{array})$在$(\begin{array}{l}{e,+∞}\end{array})$上是单调递减,即可得出结论.
解答 (1)解:$f(\begin{array}{l}x\end{array})=\frac{lnx}{x}$,∴$f'(\begin{array}{l}x\end{array})=\frac{1-lnx}{x^2}$
∴当x>e时,$f'(\begin{array}{l}x\end{array})<0$,∴函数$f(\begin{array}{l}x\end{array})$在$(\begin{array}{l}{e,+∞}\end{array})$上是单调递减.
当0<x<e时,$f'(\begin{array}{l}x\end{array})>0$,∴函数$f(\begin{array}{l}x\end{array})$在(0,e)上是单调递增.
∴f(x)的增区间是(0,e),减区间是$(\begin{array}{l}{e,+∞}\end{array})$.…(6分)
(2)证明:∵ba>0,ab>0
∴要证:ba>ab只要证:alnb>blna
只要证$\frac{lnb}{b}>\frac{lna}{a}$.(∵a>b>e)
由(1)得函数$f(\begin{array}{l}x\end{array})$在$(\begin{array}{l}{e,+∞}\end{array})$上是单调递减.
∴当a>b>e时,有$f(\begin{array}{l}b\end{array})>f(\begin{array}{l}a\end{array})$即$\frac{lnb}{b}>\frac{lna}{a}$.
∴ba>ab…(12分)
点评 本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 80 | C. | 252 | D. | 126 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{20}{21}$ | C. | $\frac{26}{27}$ | D. | $\frac{35}{36}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com