【题目】已知三棱锥
中,
与
均为等腰直角三角形,且
,
,
为
上一点,且
平面
.
![]()
(1)求证:
;
(2)过
作一平面分别交
,
,
于
,
,
,若四边形
为平行四边形,求多面体
的表面积.
【答案】(1)证明见解析.(2)![]()
【解析】
(1)由线面垂直的判定定理,证得
平面
,再利用性质定理,即可证得
,
(2)由线面垂直的判定定理和性质定理,得到
,在
中,求得
,进而得到
,即
,再利用线面平行的性质定理得到
,进而得到四边形
为矩形,同理求得
,结合面积公式,即可求解.
(1)由
,所以
,
由
平面
,
平面
,可得
,
又由
,且
平面
,
平面
,所以
平面
,
又因为
平面
,所以
.
(2)在等腰直角
中,
,所以
,
又因为
,可得
平面
,所以
.
等腰
中,由
,可得
,
又
中,
,
,所以
,
而
,可得
,故
,
因为四边形
为平行四边形,所以
,可得
平面
,
又
平面
,且平面
平面
,所以
,
由
,可得
,且有
,
由
平面
,可得
,
进而得到
,所以四边形
为矩形,
同理可得
,且
,
可得
,
,
,![]()
.
所以所求表面积为
.
![]()
科目:高中数学 来源: 题型:
【题目】2020元旦联欢晚会上,
,
两班各设计了一个摸球表演节目的游戏:
班在一个纸盒中装有1个红球,1个黄球,1个白球,这些球除颜色外完全相同,记事件
:同学们有放回地每次摸出1个球,重复
次,
次摸球中既有红球,也有黄球,还有白球;
班在一个纸盒中装有1个蓝球,1个黑球,这些球除颜色外完全相同,记事件
:同学们有放回地每次摸出1个球,重复
次,
次摸球中既有蓝球,也有黑球,事件
发生的概率为
,事件
发生的概率为
.
(1)求概率
,
及
,
;
(2)已知
,其中
,
为常数,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,
曲线
(
为参数),
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
(
且
).
(1)求
与
的极坐标方程;
(2)若
与
相交于点
,
与
相交于点
,当
为何值时,
最大,并求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(
为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为
.
(1)写出曲线C1和C2的直角坐标方程;
(2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:
![]()
(1)由折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2020年4月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有A,B两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对A,B两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
![]()
经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?
参考数据:
,
.
参考公式:回归直线方程
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆C:
(a>b>0)的短轴长为2,F1,F2分别是椭圆C的左、右焦点,过点F2的动直线与椭圆交于点P,Q,过点F2与PQ垂直的直线与椭圆C交于A、B两点.当直线AB过原点时,PF1=3PF2.
![]()
(1)求椭圆的标准方程;
(2)若点H(3,0),记直线PH,QH,AH,BH的斜率依次为
,
,
,
.
①若
,求直线PQ的斜率;
②求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
,直线
过点
,且倾斜角为
,以
为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求直线
的参数方程和圆
的标准方程;
(2)设直线
与圆
交于
、
两点,若
,求直线
的倾斜角的
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在国家批复成立江北新区后,南京市政府规划在新区内的一条形地块上新建一个全民健身中心,规划区域为四边形ABCD,如图
,
,点B在线段OA上,点C、D分别在射线OP与AQ上,且A和C关于BD对称.已知
.
![]()
(1)若
,求BD的长;
(2)问点C在何处时,规划区域的面积最小?最小值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(
为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,且直线
与曲线C有两个不同的交点.
(1)求实数a的取值范围;
(2)已知M为曲线C上一点,且曲线C在点M处的切线与直线
垂直,求点M的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com