精英家教网 > 高中数学 > 题目详情
13.在正三棱柱ABC-A1B1C1中,若AB=BB1,D是CC1中点,则CA1与BD所成角的大小是(  )
A.$\frac{π}{3}$B.$\frac{5π}{12}$C.$\frac{π}{2}$D.$\frac{7π}{12}$

分析 由题意,画出图形,通过作平行线得到所求角的平面角,利用余弦定理求大小.

解答 解:如图过D作DE∥CA1交A1C1于E,则E是A1C1的中点,连接BE,则∠BDE为CA1与BD所成角,
设AB=2,则BD=$\sqrt{5}$,DE=$\sqrt{2}$,B1E=$\sqrt{3}$,BE=$\sqrt{B{{B}_{1}}^{2}+{B}_{1}{E}^{2}}=\sqrt{7}$,
在△BDE中,cos∠BDE=$\frac{D{E}^{2}+B{D}^{2}-B{E}^{2}}{2DE×BD}=\frac{2+5-7}{2\sqrt{2}\sqrt{5}}$=0,
所以∠BDE=$\frac{π}{2}$;
故选:C.

点评 本题考查了正三棱柱的性质以及异面直线所成的角的求法;关键是找到平面角,利用余弦定理求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是定义在R上的奇函数,当x∈(0,1]时,f(x)=x+3,则f(-$\frac{1}{2}$)=(  )
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.-$\frac{7}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线$\left\{\begin{array}{l}x=-1+2t\\ y=3-2t\end{array}\right.(t$为参数)与曲线$\left\{\begin{array}{l}x=4+acosθ\\ y=asinθ\end{array}\right.(θ$为参数,a>0)有且只有一个公共点,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆锥曲线mx2+y2=1的离心率为$\sqrt{2}$,则实数m的值为(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:x-ky-5=0与圆O:x2+y2=10交于A,B两点且$\overrightarrow{OA}•\overrightarrow{OB}$=0,则k=(  )
A.2B.±2C.±$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若经过点P(-3,0)的直线l与圆M:x2+y2+4x-2y+3=0相切,则圆M的圆心坐标是(-2,1);半径为$\sqrt{2}$;切线在y轴上的截距是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设平面α与平面β相交于直线m,直线l1在平面α内,直线l2在平面β内,且l2⊥m,则“l1⊥l2”是“α⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是公比大于1的等比数列,其前n项和为Sn,且a1,a3是方程x2-5x+4=0的两根,则S3=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知凼数f(x)=ex,x∈R
(1)求凼数h(x)=f(x)-2x的最小值
(2)令g(x)=$\frac{f(x)}{1+a{x}^{2}}$,a>0,若g(x)在R上为单调凼数,求a的范围
(3)证明:曲线y=f(x)与曲线y=$\frac{1}{2}$x2+x+1有唯一公共点.

查看答案和解析>>

同步练习册答案