分析 (1)利用换元法,求出函数的解析式,再讨论f(x)的奇偶性和单调性;
(2)由f(x)是R上的奇函数,增函数,f(1-m)+f(-2m)<0有-1<1-m<2m<1,即可求实数m取值的集合;
(3)由x<2,得f(x)<f(2),要使f(x)的值恒为负数,则f(2)≤0,求出a的范围,可得结论.
解答 解:(1)令logax=t,则x=at,∴f(t)=$\frac{a}{{a}^{2}-1}$(at-a-t),
∴f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x),…(2分)
因为f(-x)=$\frac{a}{{a}^{2}-1}$(a-x-ax)=-f(x),
所以f(x)是R上的奇函数;…(4分)
当a>1时,$\frac{a}{{a}^{2}-1}$>0,ax是增函数,-a-x是增函数
所以f(x)是R上的增函数;
当0<a<1时,$\frac{a}{{a}^{2}-1}$<0,ax是减函数,-a-x是减函数,
所以f(x)是R上的增函数;
综上所述,a>0,a≠1,f(x)是R上的增函数 …(6分)
(2)由f(x)是R上的奇函数,增函数,f(1-m)+f(-2m)<0有-1<1-m<2m<1,
解得$\frac{1}{3}$<m<$\frac{1}{2}$ …(9分)
(3)因为f(x)是R上的增函数,
由x<2,得f(x)<f(2),要使f(x)的值恒为负数,则f(2)≤0,
即f(2)=$\frac{a}{{a}^{2}-1}$(a2-a-2)≤0
解得 a<0,与a>0,a≠1矛盾,
所以满足条件的实数a不存在.…(13分)
点评 本题考查函数解析式的求解,考查函数的性质,考查学生解不等式的能力,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36 | B. | 63 | C. | $A_6^3$ | D. | $C_6^3$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2,1.2 | B. | 2,2.4 | C. | 5,2.4 | D. | 5,4.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com