精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2cosx,-cos(x+
π
12
)),
n
=(cosx,2sin(x+
π
12
)),记f(x)=
m
n

(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(
A
2
)=1
,a=2,b=
3
,求sinC的值.
考点:余弦定理,平面向量数量积的运算,三角函数中的恒等变换应用
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)由三角函数中的恒等变换应用可得函数解析式为f(x)=1-sin(2x+
π
6
),可求T,由-
π
2
+2kπ
≤2x+
π
6
π
2
+2kπ
,k∈Z,可解得单调递减区间.
(Ⅱ)由f(
A
2
)=1-sin(A+
π
6
)=1,可解得A,cosA,由正弦定理可得sinB,cosB,从而可求sinC=sin(A+B)的值.
解答: 解:(Ⅰ)∵f(x)=
m
n
=2cos2x-2sin(x+
π
12
)cos(x+
π
12
)=1-sin(2x+
π
6
),
∴T=
2
=π,
∴由-
π
2
+2kπ
≤2x+
π
6
π
2
+2kπ
,k∈Z,可解得:x∈[kπ-
π
3
,kπ+
π
6
],k∈Z,
∴单调递减区间为:[kπ-
π
3
,kπ+
π
6
],k∈Z.
(Ⅱ)∵f(
A
2
)=1-sin(A+
π
6
)=1,可解得:A+
π
6
=kπ,k∈Z,
∴由A为三角形内角,可得A=
6
,cosA=-
3
2

∴由正弦定理可得:sinB=
bsinA
a
=
3
×
1
2
2
=
3
4
,cosB=
1-sin2B
=
13
4

∴sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=
1
2
×
13
4
-
3
2
×
3
4
=
13
-3
8
点评:本题主要考查了平面向量数量积的运算,三角函数中的恒等变换应用,正弦函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作 AB的垂线,交AC的延长线于点 E,交AD的延长线于点F,过G作⊙O的切线,切点为H,求证:
(1)C,D,F,E四点共圆;
(2)GH2=GE•GF.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4|an|,求数列{
1
bnbn+1
}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

点A是抛物线C1:y2=2px(p>0)与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)的一条渐近线的交点(异于原点),若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率为(  )
A、
2
B、
5
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆O:x2+y2=64分别与x轴、y轴的正半轴交于点A、B,直线l:y=kx-k+2分别于x轴、y轴的正半轴交于点N、M.
(Ⅰ)求证:直线l恒过定点,并求出定点P的坐标;
(Ⅱ)求证:直线l与圆O恒有两个不同的交点;
(Ⅲ)求当M、N恒在圆O内部时,试求四边形ABMN面积S的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行以下程序框图,所得的结果为(  )
A、1067B、2100
C、2101D、4160

查看答案和解析>>

科目:高中数学 来源: 题型:

一篮球运动员投篮的命中率为60%,以η表示他首次投中时累计已投篮的次数,则η的数学期望是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一口袋中装有5个白球和3个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P(ξ=12)=
 
.(用式子作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

方程ln(2x+1)=
1
3x+2
的一个根落在区间(  )(参考数值:ln1.5≈0.41,ln2≈0.69,ln2.5≈0.92)
A、(-
1
4
,0)
B、(0,
1
4
C、(
1
4
1
2
D、(
1
2
3
4

查看答案和解析>>

同步练习册答案