精英家教网 > 高中数学 > 题目详情
20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$A({1,\frac{3}{2}})$,C的四个顶点构成的四边形面积为$4\sqrt{3}$.
(1)求椭圆C的方程;
(2)在椭圆C上是否存在相异两点E,F,使其满足:①直线AE与直线AF的斜率互为相反数;②线段EF的中点在y轴上.若存在,求出∠EAF的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.

分析 (1)由题意列关于a,b的方程组,求解可得a,b的值,则椭圆方程可求;
(2)由题意分别设出AE、AF所在直线方程,与椭圆方程联立求得E,F的横坐标,再由两点的中点在y轴上列式求得斜率,可得满足条件的E,F存在,进一步求出∠EAF的平分线方程,与椭圆联立求得弦长.

解答 解:(1)由已知得$\left\{\begin{array}{l}\frac{1}{a^2}+\frac{9}{{4{b^2}}}=1\\ ab=2\sqrt{3}\\ a>b>0\end{array}\right.$,解得a2=4,b2=3,
∴椭圆C的方程$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)设直线AE的方程为$y-\frac{3}{2}=k({x-1})$,代入$\frac{x^2}{4}+\frac{y^2}{3}=1$,得(3+4k2)x2+4k(3-2k)x+4k2-12k-3=0.①
设E(x1,y1),F(x2,y2),且x=1是方程①的根,
∴${x_1}=\frac{{4{k^2}-12k-3}}{{3+4{k^2}}}$,
用-k代替上式中的k,可得${x_2}=\frac{{4{k^2}+12k-3}}{{3+4{k^2}}}$,
∵E,F的中点在y轴上,∴x1+x2=0,
∴$\frac{{4{k^2}-12k-3}}{{3+4{k^2}}}+\frac{{4{k^2}+12k-3}}{{3+4{k^2}}}=0$,解得$k=±\frac{{\sqrt{3}}}{2}$,
因此满足条件的点E,F存在.
由平面几何知识可知∠EAF的角平分线方程为x=1.
把x=1代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,可得y=$±\frac{3}{2}$,
∴所求弦长为3.

点评 本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a1+a2+a3=-15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知全集U=R,M={x|x<0或x>2},N={x|x+3<0},则M∩N={x|x<-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列不等式中,正确的个数为(  )
①若x>0且x≠1,则$lnx+\frac{1}{lnx}≥2$;
②a2+b2+2≥2a+2b;
③${x^2}+\frac{1}{{{x^2}+1}}≥1$;
④若a>0,b>0,则$\frac{a^2}{b}+\frac{b^2}{a}≥a+b$;
⑤任意的x>0,都有ex>x+1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2-2x-3<0},B={y|y=-3x2+1,x∈R},则A∩B=(  )
A.{x|-3<x≤1}B.{x|1≤x<2}C.{x|-1<x≤1}D.{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x,$g(x)=\frac{1}{{{2^{|x|}}}}+2$.
(1)求函数g(x)的值域;
(2)求满足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设$f(x)={log_{\frac{1}{2}}}\frac{1-ax}{x-1}+x$为奇函数,a为常数.
(1)求a的值;
(2)判断函数f(x)在x∈(1,+∞)上的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.二次函数f(x)满足f(3-x)=f(3+x),又f(x)是[0,3]上的增函数,且f(a)≥f(0),那么实数a的取值范围是[0,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知矩形ABCD的顶点都在球心为O,半径为R的球面上,$AB=6,BC=2\sqrt{3}$,且四棱锥O-ABCD的体积为$8\sqrt{3}$,则R等于(  )
A.4B.$2\sqrt{3}$C.$\frac{{4\sqrt{7}}}{9}$D.$\sqrt{13}$

查看答案和解析>>

同步练习册答案