| A. | 4 | B. | $2\sqrt{3}$ | C. | $\frac{{4\sqrt{7}}}{9}$ | D. | $\sqrt{13}$ |
分析 由题意求出矩形的对角线的长,即截面圆的直径,根据棱锥的体积计算出球心距,进而求出球的半径.
解答 解:由题可知矩形ABCD所在截面圆的半径即为ABCD的对角线长度的一半,
∵AB=6,BC=2$\sqrt{3}$,
∴r=$\frac{1}{2}\sqrt{{6}^{2}+(2\sqrt{3})^{2}}=2\sqrt{3}$,
由矩形ABCD的面积S=AB•BC=12$\sqrt{3}$,
则O到平面ABCD的距离h满足:$\frac{1}{3}$×12$\sqrt{3}$h=8$\sqrt{3}$,
解得h=2,
故球的半径R=$\sqrt{{r}^{2}+{h}^{2}}=\sqrt{(2\sqrt{3})^{2}+{2}^{2}}=4$,
故选:A.
点评 本题考查球内几何体的体积的计算,考查空间想象能力和计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有两个 | B. | 有一个 | ||
| C. | 没有 | D. | 上述情况都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,1)∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-3)∪(1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com