精英家教网 > 高中数学 > 题目详情
9.二次函数f(x)满足f(3-x)=f(3+x),又f(x)是[0,3]上的增函数,且f(a)≥f(0),那么实数a的取值范围是[0,6].

分析 先求出函数的对称轴,根据函数的对称性,求出函数的单调区间,从而求出a的范围.

解答 解:∵f(x)满足f(3-x)=f(3+x),
∴对称轴是x=3,
又f(x)在[0,3]上是增函数,
则抛物线的开口向下,且f(x)在[3,6]上是减函数,
∵f(a)≥f(0),则f(a)≥f(6),
所以根据二次函数的单调性并结合图象(示意图)可得:
0≤a≤6.
故答案为:[0,6].

点评 本题考查了二次函数的性质,考查函数的单调性,对称性,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xlnx-ax2-x.
(1)若a=$\frac{1}{2}$,令g(x)=f′(x),求g(x)的单调区间;
(2)若f(x)在(0,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$A({1,\frac{3}{2}})$,C的四个顶点构成的四边形面积为$4\sqrt{3}$.
(1)求椭圆C的方程;
(2)在椭圆C上是否存在相异两点E,F,使其满足:①直线AE与直线AF的斜率互为相反数;②线段EF的中点在y轴上.若存在,求出∠EAF的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-ax-1.
(1)当a=e时,求函数f(x)的单调区间;
(2)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围;
(3)求证:e${\;}^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}$>n+1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知两点A(-2,0),B(0,1),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是$\frac{3+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ln(x2-2x-8)的单调递减区间是(  )
A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的偶函数f(x),当x≥0时,f(x)=ex+x3+ln(x2+1),且f(x+t)>f(x)在x∈(-1,+∞)上恒成立,则关于x的方程f(2x+1)=t的根的个数叙述正确的是(  )
A.有两个B.有一个
C.没有D.上述情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x2-mx-m)e2+2m(m∈R).
(Ⅰ)若函数f(x)在x=0处取得根值,求m的值和函数f(x)的单调区间;
(Ⅱ)若关于x的不等式f(x)>0在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案