分析 (1)利用奇函数满足f(-x)+f(x)=0对定义域内的任意x都成立得到关于实数a的恒等式,据此求得实数a的值即可;
(2)结合(1)中函数的解析式结合函数的单调性的定义即可确定函数的单调性.
解答 解:(1)∵$f(x)={log_{\frac{1}{2}}}\frac{1-ax}{x-1}+x$为奇函数,∴f(-x)+f(x)=0对定义域内的任意x都成立,
∴${log_{\frac{1}{2}}}\frac{1+ax}{-x-1}-x+{log_{\frac{1}{2}}}\frac{1-ax}{x-1}+x=0$,∴$\frac{1+ax}{-x-1}•\frac{1-ax}{x-1}=1$,解得a=-1或a=1(舍去)
(2)由(1)知:∵$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}+x$,设x1,x2∈(1,+∞),
设x1<x2,则$\frac{{1+{x_1}}}{{{x_1}-1}}-\frac{{1+{x_2}}}{{{x_2}-1}}=\frac{{{x_2}-{x_1}}}{{({x_1}-1)({x_2}-1)}}>0$,
∴${log_{\frac{1}{2}}}\frac{{1+{x_1}}}{{{x_1}-1}}<{log_{\frac{1}{2}}}\frac{{1+{x_2}}}{{{x_2}-1}}$,
∴${log_{\frac{1}{2}}}\frac{{1+{x_1}}}{{{x_1}-1}}+{x_1}<{log_{\frac{1}{2}}}\frac{{1+{x_2}}}{{{x_2}-1}}+{x_2}$,∴f(x1)<f(x2),
∴f(x)在x∈(1,+∞)上是增函数
点评 本题考查奇函数的性质,函数单调性的定义及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有两个 | B. | 有一个 | ||
| C. | 没有 | D. | 上述情况都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com