精英家教网 > 高中数学 > 题目详情
7.已知$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是互相垂直的单位向量,若$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$与$λ\overrightarrow{e_1}-\overrightarrow{e_2}$的夹角为60°,则实数λ的值为$\frac{\sqrt{3}}{3}$.

分析 由已知可得∴$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=0$,再由$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$与$λ\overrightarrow{e_1}-\overrightarrow{e_2}$的夹角为60°列式求得实数λ的值.

解答 解:∵$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是互相垂直的单位向量,
∴$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=0$.
又$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$与$λ\overrightarrow{e_1}-\overrightarrow{e_2}$的夹角为60°,
($\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$)•($λ\overrightarrow{e_1}-\overrightarrow{e_2}$)=$λ-\sqrt{3}$,
|$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$|=$\sqrt{(\overrightarrow{{e}_{1}}+\sqrt{3}\overrightarrow{{e}_{2}})^{2}}=2$,|$λ\overrightarrow{e_1}-\overrightarrow{e_2}$|=$\sqrt{(λ\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})^{2}}=\sqrt{{λ}^{2}+1}$.
∴cos60$°=\frac{1}{2}$=$\frac{(\overrightarrow{{e}_{1}}+\sqrt{3}\overrightarrow{{e}_{2}})•(λ\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}})}{|\overrightarrow{{e}_{1}}+\sqrt{3}\overrightarrow{{e}_{2}}||λ\overrightarrow{{e}_{1}}-\overrightarrow{{e}_{2}}|}$=$\frac{λ-\sqrt{3}}{2\sqrt{{λ}^{2}+1}}$,
解得:$λ=\frac{\sqrt{3}}{3}$.
故答案为:$\frac{{\sqrt{3}}}{3}$.

点评 本题考查平面向量的数量积运算,考查向量夹角得求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,a2=3,a3+a4=9,则a8的值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩X~N(100,σ2)(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的$\frac{3}{4}$,则此次期末联考中成绩不低于120分的学生人数约为(  )
A.120B.160C.200D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x2-2x-3<0},B={y|y=-3x2+1,x∈R},则A∩B=(  )
A.{x|-3<x≤1}B.{x|1≤x<2}C.{x|-1<x≤1}D.{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求CC1到平面A1AB的距离;
(3)求二面角A-A1B-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设$f(x)={log_{\frac{1}{2}}}\frac{1-ax}{x-1}+x$为奇函数,a为常数.
(1)求a的值;
(2)判断函数f(x)在x∈(1,+∞)上的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C的对边分别是边a,b,c,且满足bcos C=(4a-c)cos B.则sinB=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,x≤1}\\{-lo{g}_{2}(x+1),x>1}\end{array}\right.$,且f(a)=-4,则f(14-a)=(  )
A.-$\frac{7}{4}$B.-$\frac{5}{4}$C.-$\frac{3}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.使f (x)=$\frac{2x}{|x|+1}$的定义域与值域均为[a,b]的有序实数对(a,b)有3个.

查看答案和解析>>

同步练习册答案