精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)的导函数为f′(x)=ax2-2ax,若a<0,则函数f(x)的图象可能是(  )
A.B.C.D.
第Ⅱ卷

分析 确定函数f(x)在(-∞,0)上单调递减,在(0,2)上单调递增,在(2,+∞)上单调递减,即可得出结论.

解答 解:函数f(x)的导函数为f′(x)=ax2-2ax=ax(x-2),
∵a<0,
∴函数f(x)在(-∞,0)上单调递减,在(0,2)上单调递增,在(2,+∞)上单调递减,
故选:D.

点评 本题考查导数与导函数的关系,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次生活习惯是否符合低碳观念的调查,从年龄段[40,55]的人群中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,则选取的2名领队中至少有1人年龄在[40,45)岁的概率为$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.A,B,C是球面上的三点,且AB=1,BC=2,∠ABC=120°,且球心到平面ABC的距离为3,则球的表面积为$\frac{220}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={x∈N|0<x<4}的真子集个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了调查胃病是否与生活规律有关,某同学在当地随机调查了500名30岁以上的人,并根据调查结果计算出了随机变量K2的观测值k=6.080,则认为30岁以上的人患胃病与生活无规律有关时,出错的概率不会超过(  )
附表:
P(K2≥k00.400.250.100.050.0250.0100.0050.001
k00.7081.3232.7063.8415.0246.6357.87910.828
A.0.001B.0.005C.0.010D.0.025

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
年     份2008200920102011201220132014
年份代号t1234567
人均纯收入y2.73.63.34.65.45.76.2
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)预测该地区2016年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({t_i}-\bar\overline{t})({y_i}-\bar\overline{y})}}}{{\sum_{i=1}^n{{{({t_i}-\bar\overline{t})}^2}}}}$,$\hat a=\bar\overline{y}-\hat b\bar\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a,b,c为实数,则下列命题正确的是(  )
A.若a>b,则ac2>bc2B.若a<b<0,则$\frac{1}{a}$$<\frac{1}{b}$
C.若a<b<0,则a2>ab>b2D.若a<b<0,则$\frac{b}{a}$$>\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了200名30岁以上的人,并根据调查结果制成了不完整的列联表如下:
 不患胃病患胃病总计
生活有规律6040 
生活无规律 60100
总计100  
(Ⅰ)补全列联表中的数据;
(Ⅱ)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?
参考公式和数表如下:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙两位射击运动员在一次射击测试中各射靶10次,两人射中环数统计结果如图所示:

若用$\overline{x}$表示所得环数的平均数,s表示标准差,则下列结论正确的是(  )
A.$\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$B.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$C.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$D.s<s

查看答案和解析>>

同步练习册答案