精英家教网 > 高中数学 > 题目详情
1.设a,b∈R+,则下列不等式中一定不成立的是(  )
A.a+b+$\frac{1}{\sqrt{ab}}>2\sqrt{2}$B.(a+b)($\frac{1}{a}+\frac{1}{b}$)>4C.$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}>ab$D.$\frac{2ab}{a+b}>\sqrt{ab}$

分析 利用基本不等式判断即可.

解答 解:∵a+b+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{ab}$+$\frac{1}{\sqrt{ab}}$(a=b等号成立),
2$\sqrt{ab}$+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{2}$(ab=$\frac{1}{2}$等号成立),
a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$,
∴(a+b)($\frac{1}{a}$+$\frac{1}{b}$)=2+$\frac{a}{b}$+$\frac{b}{a}$≥4(a=b等号成立),
$\frac{{a}^{2}{+b}^{2}}{\sqrt{ab}}$≥$\frac{2ab}{\sqrt{ab}}$=2$\sqrt{ab}$,$\frac{2ab}{a+b}$≤$\frac{2ab}{2\sqrt{ab}}$=$\sqrt{ab}$,
∴一定不成立的是D,
故选:D.

点评 本题考察了基本不等式的运用,关键掌握好条件,不等号方向.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=|x+1|+|x+a|的最小值为1,则实数a的值为0或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\frac{{{{(x-1)}^6}}}{x}$的展开式中,x2项的系数为-20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC中,角A、B、C所对的边分别是a、b、c,若2$\overrightarrow{BC}$•$\overrightarrow{BA}$=b2-(a+c)2
(1)求角B的大小;
(2)已知b=2$\sqrt{3}$,当代数式2$\sqrt{3}$cos2$\frac{A}{2}$-sin($\frac{4π}{3}$-C)取得最大值时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,点A(3,0),动点P满足PA=2PO,动点Q(3a,4a+5)(a∈R),则线段PQ长度的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要得到函数f (x)=sin2x的导函数 f′(x)的图象,只需将f (x)的图象(  )
A.向左平移$\frac{π}{2}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)
B.向左平移$\frac{π}{2}$个单位,再把各点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变)
C.向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的$\frac{1}{2}$倍(横坐标不变)
D.向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\sqrt{3}$sinxcosx+cos2x+m.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,函数f(x)的最小值为2,求函数f(x)的最大值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:
使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]
只数52344253
根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=-1,an=3an-1+2n-1(n≥2),求an

查看答案和解析>>

同步练习册答案