精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a•2x-2+a2x+1
(a∈R).
(1)试判断f(x)的单调性,并证明你的结论;
(2)若f(x)为定义域上的奇函数,
①当x∈[-1,1]时,求函数f(x)的值域;
②求满足f(ax)≤f(2a-x)的x的取值范围.
分析:(1)利用函数单调性的定义证明函数是增函数.
(2)利用f(x)为定义域上的奇函数,由f(0)=0,确定a,
①利用函数的单调性求值域.②利用函数的单调性解不等式即可.
解答:解:(1)函数f(x)在R上单调递增.
证明:∵f(x)=
a•2x-2+a
2x+1
=
a(2x+1)-2
2x+1
=a-
2
2x+1

∴在定义域上任意设两个实数x1,x2,设x1<x2
f(x1)-f(x2)=a-
2
2x1+1
-(a-
2
2x2+1
)=
2
2x2+1
-
2
2x1+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)

∵x1<x2
2x1-2x20
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在R上是增函数.
(2)∵f(x)的定义域为R上的奇函数,
∴f(0)=
2a-2
2
=a-1
=0,解得a=1,经检验符合.
∴f(x)=
2x-1
2x+1

①∵f(x)在R上是增函数.
∴f(x)在[-1,1]上是增函数.
∴当x=-1时,函数f(x)取得最小值f(-1)=-
1
3

当x=1时,函数f(x)取得最大值f(1)=
1
3

-
1
3
≤f(x)≤
1
3
.,即函数f(x)的值域是[-
1
3
1
3
].
②∵a=1,∴不等式f(ax)≤f(2a-x)等价为f(x)≤f(2-x),
∵f(x)在R上是增函数.
∴x<2-x,解x<1,
∴x的取值范围是(-∞,1).
点评:本题主要考查函数奇偶性的应用,函数单调性的判断和证明,利用单调性的性质求函数的值域是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案