2£®½­ËÕË´Ìì×ãÇò¾ãÀÖ²¿Îª¾ÈÖúÔÚ¡°3.10ÔÆÄÏÓ¯½­µØÕð¡±ÖÐʧѧµÄ¶ùͯ£¬×¼±¸ÔÚ½­ËÕÊ¡Îą̊ɽÌåÓý³¡¾ÙÐжೡ×ãÇòÒåÈü£¬Ô¤¼ÆÂô³öÃÅÆ±2.4ÍòÕÅ£¬Æ±¼Û·Ö±ðΪ3Ôª¡¢5ÔªºÍ8ÔªÈýÖÖ£¬ÇÒÆ±¼Û3ÔªºÍ5ÔªµÄÕÅÊýµÄ»ýΪ0.6ÍòÕÅ£®ÉèxÊÇÃÅÆ±µÄ×ÜÊÕÈ룬¾­Ô¤Ëã¿Û³ýÆäËü¸÷Ï֧ºó£¬¸Ã¾ãÀÖ²¿µÄ´¿ÊÕÈ뺯ÊýÄ£ÐÍΪy=lg2x£¬Ôòµ±ÕâÈýÖÖÃÅÆ±µÄÕÅÊý·Ö±ðΪ£¨¡¡¡¡£©ÍòÕÅʱ£¬¿ÉÒÔΪʧѧ¶ùͯļ¾èµÄ´¿ÊÕÈë×î´ó£®
A£®1¡¢0£®¡¢0.8B£®0.6¡¢0.8¡¢1C£®0.6¡¢1¡¢0.8D£®0.6¡¢0.6¡¢0.8

·ÖÎö Éè3Ôª¡¢5Ôª¡¢8ÔªÃÅÆ±µÄÕÅÊý·Ö±ðΪa£¬b£¬c£¬ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{a+b+c=2.4}\\{ab=0.6}\\{x=3a+5b+8c}\end{array}\right.$£¬´Ó¶øÓÉ»ù±¾²»µÈʽ¿ÉµÃx=19.2-£¨5a+3b£©¡Ü19.2-2$\sqrt{15ab}$=13.2£»´Ó¶ø¿ÉµÃ$\left\{\begin{array}{l}{5a=3b}\\{ab=0.6}\end{array}\right.$£¬´Ó¶ø½âµÃa=0.6£¬b=1£¬c=0.8£®

½â´ð ½â£ºÉè3Ôª¡¢5Ôª¡¢8ÔªÃÅÆ±µÄÕÅÊý·Ö±ðΪa£¬b£¬c£¬
ÔòÓÐ$\left\{\begin{array}{l}{a+b+c=2.4}\\{ab=0.6}\\{x=3a+5b+8c}\end{array}\right.$£¬
ÕûÀíµÃ£¬
x=19.2-£¨5a+3b£©¡Ü19.2-2$\sqrt{15ab}$=13.2£¨ÍòÔª£©£®
µ±ÇÒ½öµ±$\left\{\begin{array}{l}{5a=3b}\\{ab=0.6}\end{array}\right.$ʱµÈºÅ³ÉÁ¢£¬
½âµÃ£¬a=0.6£¬b=1£¬
ËùÒÔc=0.8£®
ÓÉÓÚy=lg2xΪÔöº¯Êý£¬
¼´´ËʱyҲǡÓÐ×î´óÖµ£®
¹ÊÈýÖÖÃÅÆ±µÄÕÅÊý·Ö±ðΪ0.6¡¢1¡¢0.8ÍòÕÅʱ¿ÉÒÔΪʧѧ¶ùͯļ¾èµÄ´¿ÊÕÈë×î´ó£®
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éÁË»ù±¾²»µÈʽÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬Í¬Ê±¿¼²éÁ˶ÔÊýº¯Êý¼°Ö¸Êýº¯ÊýµÄÐÔÖÊÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÓÒÖ§ÉϵÄÒ»µãP£¨x0£¬y0£©µ½×ó½¹µãµÄ¾àÀëÓëµ½ÓÒ½¹µãµÄ¾àÀëÖ®²îΪ2$\sqrt{2}$£¬ÇÒµ½Á½Ìõ½¥½øÏߵľàÀëÖ®»ýΪ$\frac{2}{3}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\sqrt{6}$C£®$\frac{\sqrt{5}}{2}$D£®$\frac{\sqrt{6}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Í¼1Ϊij´å1000»§´åÃñÔÂÓõçÁ¿£¨µ¥Î»£º¶È£©µÄƵÂÊ·Ö²¼Ö±·½Í¼£¬¼ÇÔÂÓõçÁ¿ÔÚ[50£¬100£©µÄÓû§ÊýΪA1£¬ÓõçÁ¿ÔÚ[100£¬150£©µÄÓû§ÊýΪA2£¬¡­£¬ÒÔ´ËÀàÍÆ£¬ÓõçÁ¿ÔÚ[300£¬350]µÄÓû§ÊýΪA6£¬Í¼2ÊÇͳ¼ÆÍ¼1ÖдåÃñÔÂÓõçÁ¿ÔÚÒ»¶¨·¶Î§ÄÚµÄÓû§ÊýµÄÒ»¸öËã·¨Á÷³Ìͼ£®¸ù¾Ýͼ1ÌṩµÄÐÅÏ¢£¬Ôòͼ2ÖÐÊä³öµÄsֵΪ£¨¡¡¡¡£©
A£®820B£®720C£®620D£®520

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\sqrt{2}cos¦Á}\\{y=1+\sqrt{2}sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³Ì£¬Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèPΪÇúÏßCÉÏÈÎÒâÒ»µã£¬Ö±ÏßlºÍÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|PA|2+|PB|2+|PO|2µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÕýÏÒÇúÏßy=sinxÔڵ㣨$\frac{¦Ð}{3}$£¬$\frac{\sqrt{3}}{2}$£©µÄÇÐÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x+2y-$\sqrt{3}$+$\frac{¦Ð}{3}$=0B£®x-2y+$\sqrt{3}$-$\frac{¦Ð}{3}$=0C£®$\sqrt{3}$x-2y+$\sqrt{3}$-$\frac{\sqrt{3}}{3}$¦Ð=0D£®$\sqrt{3}$x+2y-$\sqrt{3}$+$\frac{\sqrt{3}}{3}$¦Ð=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ë«ÇúÏßÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚyÖáÉÏ£¬ÀëÐÄÂÊΪ$\sqrt{5}$£¬ÔòÆä½¥½øÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=$\frac{1}{2}$xB£®y=¡À$\frac{1}{2}$xC£®y=-$\frac{1}{2}$xD£®y=¡À2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖª¹ýµã£¨1£¬1£©µÄÖ±ÏßÓëÔ²x2+y2-4x-6y+4=0ÏཻÓÚA£¬BÁ½µã£¬Ôò|AB|µÄ×îСֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬aΪʵÊý£¬zΪ´¿ÐéÊý£¬1+z=a+$\frac{1+i}{1-i}$£¬Ôòz=£¨¡¡¡¡£©
A£®1B£®-1C£®iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=2an-2n+1+2£¨nΪÕýÕûÊý£©£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{$\frac{{a}_{n}}{{2}^{n}}$}ÊǵȲîÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Áîbn=log2a1+log2$\frac{{a}_{2}}{2}$+¡­+log2$\frac{{a}_{n}}{n}$£¬ÉèÊýÁÐ{$\frac{1}{{b}_{n}}$}µÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚʵÊýM£¬Ê¹µÃTn¡ÜM¶ÔÒ»ÇÐÕýÕûÊý¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸