精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,讨论函数的单调性;

2)若函数上恒成立,求实数的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)求出,分两种情况讨论的范围,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(2)分三种情况讨论的范围,函数上恒成立,当时,等价于时,等价于,分别利用导数研究函数的单调性,求出函数的最值,可得结果.

(1)依题意,

,则函数上单调递增,在上单调递减;

,则函数上单调递减,在上单调递增;

(2)因为,故

时,显然不成立;

时,①化为: ;②

时,①化为: ;③

时,化为:

,则

时, 时,

是增函数,在是减函数,

因此不成立,要成立,只要

所求的取值范围是.

【方法点晴】本题主要考查利用导数研究函数的单调性、利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立()恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值恒成立;④ 讨论参数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地户家庭的年收入(万元)和年饮食支出 (万元)的统计资料如下表:

(1)求关于的线性回归方程;(结果保留到小数点后为数字)

(2)利用(1)中的回归方程,分析这户家庭的年饮食支出的变化情况,并预测该地年收入 万元的家庭的年饮食支出.(结果保留到小数点后位数字)

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 平面,底面中, ,且 的中点.

(1)求证:平面平面

(2)问在棱上是否存在点,使平面,若存在,请求出二面角的余弦值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象在处的切线方程为.

(1)求函数的单调区间与极值;

(2)若存在实数,使得成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)探究函数的单调性;

(Ⅱ)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷,作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段。某公司为了解人们对“微信支付”认可度,对年龄段的人群随机抽取人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

组号

分组

喜欢微信支付的人数

喜欢微信支付的人数

占本组的频率

第一组

第二组

第三组

第四组

第五组

第六组

(1)补全频率分布直方图,并求 的值;

(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取人参加“微信支付日鼓励金活动,求第四、五、六组应分别抽取的人数;

(3)在(2)中抽取的人中随机选派人做采访嘉宾,求所选派的人没有第四组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:

乘坐站数

票价(元)

现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为 ;甲、乙乘坐超过站的概率分别为 .

(1)求甲、乙两人付费相同的概率;

(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在数列中, .

(1)证明数列是等差数列,并求的通项公式;

(2)设数列的前项和为,证明: .

查看答案和解析>>

同步练习册答案