【题目】已知函数
.
(1)若
,讨论函数
的单调性;
(2)若函数
在
上恒成立,求实数
的取值范围.
【答案】(1)见解析(2) ![]()
【解析】试题分析:(1)求出
,分两种情况讨论
的范围,分别令
求得
的范围,可得函数
增区间,
求得
的范围,可得函数
的减区间;(2)分三种情况讨论
的范围,函数
在
上恒成立,当
时,等价于
;当
时,等价于
,分别利用导数研究函数的单调性,求出函数的最值,可得结果.
(1)依题意,
,
若
,则函数
在
上单调递增,在
上单调递减;
若
,则函数
在
上单调递减,在
上单调递增;
(2)因为
,故
,①
当
时,显然①不成立;
当
时,①化为:
;②
当
时,①化为:
;③
当
时,①化为:
;③
令
,则
,
当
时,
时,
,
故
在
是增函数,在
是减函数,
,
因此②不成立,要③成立,只要
,
所求
的取值范围是
.
【方法点晴】本题主要考查利用导数研究函数的单调性、利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数
恒成立(
可)或
恒成立(
即可);② 数形结合(
图象在
上方即可);③ 讨论最值
或
恒成立;④ 讨论参数.
科目:高中数学 来源: 题型:
【题目】某地
户家庭的年收入
(万元)和年饮食支出
(万元)的统计资料如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)求
关于
的线性回归方程;(结果保留到小数点后
为数字)
(2)利用(1)中的回归方程,分析这
户家庭的年饮食支出的变化情况,并预测该地年收入
万元的家庭的年饮食支出.(结果保留到小数点后
位数字)
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥
,
平面
,底面
中,
,
,且
,
为
的中点.
![]()
(1)求证:平面
平面
;
(2)问在棱
上是否存在点
,使
平面
,若存在,请求出二面角
的余弦值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程是
(
为参数),以原点
为极点,
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与直线
的直角坐标方程;
(Ⅱ)已知直线
与曲线
交于
,
两点,与
轴交于点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷,作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段。某公司为了解人们对“微信支付”认可度,对
年龄段的人群随机抽取
人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:
组号 | 分组 | 喜欢微信支付的人数 | 喜欢微信支付的人数 占本组的频率 |
第一组 |
|
|
|
第二组 |
|
|
|
第三组 |
|
|
|
第四组 |
|
|
|
第五组 |
|
|
|
第六组 |
|
|
|
![]()
(1)补全频率分布直方图,并求
,
,
的值;
(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取
人参加“微信支付日鼓励金”活动,求第四、五、六组应分别抽取的人数;
(3)在(2)中抽取的
人中随机选派
人做采访嘉宾,求所选派的
人没有第四组人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过
站的地铁票价如下表:
乘坐站数 |
|
|
|
票价(元) |
|
|
|
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过
站.甲、乙乘坐不超过
站的概率分别为
,
;甲、乙乘坐超过
站的概率分别为
,
.
(1)求甲、乙两人付费相同的概率;
(2)设甲、乙两人所付费用之和为随机变量
,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com