精英家教网 > 高中数学 > 题目详情
13.平面上三个力F1、F2、F3作用于一点且处于平衡位置,|F1|=N,|F2|=$\sqrt{2}$N,F1与F2的夹角为$\frac{π}{4}$,则|F3|=$\sqrt{5}$N.

分析 根据题意,画出图形,根据图形即可求出结果.

解答 解:根据题意,画出图形,如图所示;

F1与F2的合力是F,
∴$\overrightarrow{OF}$=$\overrightarrow{{OF}_{1}}$+$\overrightarrow{{OF}_{2}}$
∴|$\overrightarrow{OF}$|=|$\overrightarrow{{OF}_{1}}$+$\overrightarrow{{OF}_{2}}$|=$\sqrt{{N}^{2}+2•N•\sqrt{2}Ncos\frac{π}{4}{+(\sqrt{2}N)}^{2}}$=$\sqrt{5}$N
∴|$\overrightarrow{{OF}_{3}}$|=|$\overrightarrow{OF}$|=$\sqrt{5}$N.
故答案为:$\sqrt{5}$.

点评 本题考查了平面向量的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.不等式(a2-3a-4)x2-(a-4)x-1<0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.关于x的不等式(1-a)x2+2x+2>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=-x2+(3-2a)x+2,(a∈R).
(1)若函数f(x)在区间[-$\frac{1}{2}$,$\frac{5}{2}$]上具有单调性,求实数a的取值范围;
(2)求函数f(x)在区间[-2,-1]上存在零点时实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,左顶点为A,点B(0,b),若线段AF1(不含端点)上存在点P,使得以PF2为直径的圆经过点B,则双曲线C的离心率的取值范围是(  )
A.(1,$\frac{1+\sqrt{5}}{2}$)B.($\frac{1+\sqrt{5}}{2}$,+∞)C.($\sqrt{2}$,$\frac{1+\sqrt{5}}{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若直线y=kx+1与圆x2+(y-1)2=4的两个交点关于直线2x-y+a=0对称,则k,a的值为(  )
A.k=-$\frac{1}{2}$,a=-1B.k=$\frac{1}{2}$,a=-1C.k=$\frac{1}{2}$,a=1D.k=-$\frac{1}{2}$,a=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,若sinA>sinB,是不是一定有A>B?反之,若A>B,是不是一定有sinA>sinB?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\frac{2a\sqrt{x}}{x+2}$在区间[0,2]上是增函数.
(1)求实数a的值所组成的集合A;
(2)设关于x的方程f(x)=$\frac{x+1}{\sqrt{x}}$的两根为x1,x2,试问是否存在实数m,使得不等式m2+tm-2≤|x1-x2|对满足(1)的值,即a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC中,$\frac{{a}^{2}}{{b}^{2}}$=$\frac{tanA}{tanB}$,△ABC是什么三角形?

查看答案和解析>>

同步练习册答案