【题目】已知公差不为0的等差数列{an}满足:a1=1且a2 , a5 , a14成等比数列.
(1)求数列{an}的通项公式an和前n项和Sn;
(2)证明不等式 且n∈N*)
【答案】
(1)解:设数列{an}公差为d,因为a2,a5,a14成等比数列.
所以 ,即 (1+4d)2=(1+d)(1+13d)得3d2﹣6d=0又d≠0,所以d=2.
故
(2)证明:由(1)得 ,因为 当n≥2时, .
即 .
所以 .
即
【解析】(1)设数列{an}公差为d,因为a2 , a5 , a14成等比数列.可得 ,即 (1+4d)2=(1+d)(1+13d)解出d,利用等差数列的通项公式与求和公式即可得出.(2)由(1)得 ,因为 当n≥2时, .即 .即可证明.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知函数,其中为自然对数的底数.
(1)讨论函数的单调性;
(2)函数的图象与轴交于两点, ,点在函数的图象上,且为等腰直角三角形,记,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4x﹣a2x+1+a+1,a∈R.
(1)当a=1时,解方程f(x)﹣1=0;
(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;
(3)若函数f(x)有零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}中,a2=2,a5=128.
(1)求通项an;
(2)若bn=log2an , 数列{bn}的前n项和为Sn , 且Sn=360,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= .
(Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(ⅰ)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)= sin(2x﹣ )+1的图象向左平移 个单位长度,再向下平移1个单位长度后,得到函数g(x)的图象,则函数g(x)具有的性质(填入所有正确的序号) ①最大值为 ,图象关于直线x= 对称;②在(﹣ ,0)上单调递增,且为偶函数;③最小正周期为π;④图象关于点( ,0)对称,⑤在(0, )上单调递增,且为奇函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com