精英家教网 > 高中数学 > 题目详情
14.在区间(-1,+∞)内,函数y=ex-x是(  )
A.增函数B.减函数C.先增后减D.先减后增

分析 求导数,由导数的正负来判断函数的单调性即可.

解答 解:∵y=ex-x,∴y′=ex-1,
∵当x>0时y′=ex-1>0,函数y=ex-x单调递增,
当-1<x<0时y′=ex-1<0,函数y=ex-x单调递减.
故选:D

点评 本题考查函数的单调性的判断,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知点M(-4,0),N(4,0),B(2,0),动圆C与直线MN切于点B,过M、N与圆C相切的两直线相交于点P,则P点的轨迹方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≠±2)D.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{12}$=1(x≠±2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-x,3).
(1)若点A,B,C三点共线,求x的值;
(2)若△ABC为直角三角形,且∠B为直角,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若数列{an}的前n项和为Sn,对任意正整数n都有Sn=$\frac{4}{3}$(an-2),设bn=log2an
(1)证明数列{bn}是等差数列;
(2)设cn=(-1)n+1$\frac{4(n+1)}{{b}_{n}{b}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)求曲线f(x)=$\frac{2}{x}$在点(-2,-1)处的切线方程;
(2)求经过点(2,0)且与曲线y=$\frac{1}{x}$相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)在1:15时,钟表的时针和分针所成的绝对值较小的角是多少弧度?
(2)在12:15时,钟表的时针和分针的夹角α是多少弧度(0≤α≤2π)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC的顶点为A(1,3),B(-1,2)和C(4,1),求cosC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}+\overrightarrow{b}$=(5,-10),$\overrightarrow{a}-\overrightarrow{b}$=(3,6),则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-12B.-20C.12D.20

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三理上适应性考试一数学试卷(解析版) 题型:解答题

设函数

(1)若函数在定义域内单调递减,求的取值范围;

(2)设,证明:为自然对数的底数).

查看答案和解析>>

同步练习册答案