精英家教网 > 高中数学 > 题目详情
4.已知复数z=(1+bi)(2+i)为纯虚数(b∈R,i为虚数单位),则${∫}_{-b}^{b}$(sinx+|x|)dx=(  )
A.4B.2C.$\frac{1}{4}$D.0

分析 利用复数是纯虚数,求出b,然后求解定积分.

解答 解:复数z=(1+bi)(2+i)=2-b+(2b+1)i为纯虚数,则b=2,
则${∫}_{-b}^{b}$(sinx+|x|)dx=${∫}_{-2}^{2}$(sinx+|x|)dx=${∫}_{-2}^{0}$(sinx-x)dx+${∫}_{0}^{2}$(sinx+x)dx
=(-cosx-$\frac{1}{2}$x2)${|}_{-2}^{0}$+(-cosx+$\frac{1}{2}$x2)${|}_{0}^{2}$
=4.
故选:A.

点评 本题考查复数的基本概念,定积分的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设椭圆M:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点在x轴上,O为坐标原点,过椭圆右焦点垂直于x轴的直线,交椭圆于点A、B,S△AOB=$\frac{2}{5}$$\sqrt{5}$.
(I)求椭圆M的方程;
(Ⅱ)动直线l交椭圆M于不同的两点C,D,若以|CD|为直径的圆过原点O,
(i)求线段|CD|的取值范围;
(ii)证明:直线l与定圆N相切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.$f(x)=\frac{1}{3}{x^3}-4x+4,x∈[{-3,3}]$的最大值为$\frac{28}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC外接圆半径为$\sqrt{3}$,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为$\sqrt{6}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线f(x)=x(x-1)(x-2)(x-3)在x=2处的切线斜率是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.长方体ABCD-A′B′C′D′的顶点均在球面上,且AB=1,AC=2,AA′=3,则该球的表面积为(  )
A.B.14πC.$\frac{7π}{2}$D.$\frac{7\sqrt{14}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,当$x∈[0,\frac{π}{2}]$时,满足f(x)=1的x的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{5π}{24}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆x2+y2=4,过点P(0,1)的直线l交该圆于A,B两点,O为坐标原点,则△OAB面积的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知O为直角坐标系的原点,以Ox为始边作角α与β(0<β<α<$\frac{3π}{2}$),α与β的终边分别与单位圆相交于P、Q两点.已知P点的坐标为(-$\frac{3}{5}$,-$\frac{4}{5}$).
(1)先化简:$\frac{sinα}{1-\frac{1}{tanα}}$+$\frac{cosα}{1-tanα}$再求其值;
2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求$\frac{1}{2sinβcosβ+co{s}^{2}β}$的值.

查看答案和解析>>

同步练习册答案