分析 设球半径为R,正方体边长为a,求出当正方体体积最大时对应的球半径,由此能求出结果.
解答 解:设球半径为R,正方体边长为a,
由题意得当正方体体积最大时:
${a^2}+{(\frac{{\sqrt{2}a}}{2})^2}={R^2}$,∴$R=\frac{{\sqrt{6}a}}{2}$,
∴所得工件体积与原料体积之比的最大值为:
$\frac{a^3}{{\frac{1}{2}×\frac{{4π{R^3}}}{3}}}=\frac{a^3}{{\frac{1}{2}×\frac{4π}{3}×{{(\frac{{\sqrt{6}a}}{2})}^3}}}=\frac{{\sqrt{6}}}{3π}$.
故答案为:$\frac{{\sqrt{6}}}{3π}$.
点评 本题考查工件体积与原料体积之比的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com