精英家教网 > 高中数学 > 题目详情
18.已知在△ABC中,b(sinB+sinC)=(a-c)(sinA+sinC)(其中角A,B,C所对的边分别为a,b,c)且∠B为钝角.(1)求角A的大小;
(2)若$a=\frac{{\sqrt{3}}}{2}$,求b+c的取值范围.

分析 (Ⅰ)由已知及正弦定理,余弦定理可求$cosA=-\frac{1}{2}$,结合范围A∈(0,π),可求A的值.
(Ⅱ)由正弦定理可知$2R=\frac{a}{sinA}=1$,利用三角函数恒等变换的应用化简可求b+c=$sin(C+\frac{π}{3})$,又0$<C<\frac{π}{3}$,可得范围$\frac{π}{3}$<C+$\frac{π}{3}$<$\frac{2π}{3}$,由正弦函数的图象和性质可求取值范围.(另可用均值不等式求解)

解答 解:(Ⅰ)由正弦定理得b(b-c)=(a+c)(a-c),…3分
可得:a2=b2+c2+bc,…4分
又a2=b2+c2-2bccosA,
于是$cosA=-\frac{1}{2}$,…5分
又A∈(0,π),
∴$A=\frac{2π}{3}$.…6分
(Ⅱ)∵$A=\frac{2π}{3}$,
∴$B+C=\frac{π}{3}$,且0$<C<\frac{π}{3}$,…7分
由正弦定理可知,$2R=\frac{a}{sinA}=1$,…8分
所以b+c=2RsinB+2RsinC=sinB+sinC,…9分
=$sin(\frac{π}{3}-C)+sinC$=$\frac{{\sqrt{3}}}{2}cosC-\frac{1}{2}sinC+sinC=\frac{1}{2}sinC+\frac{{\sqrt{3}}}{2}cosC$=$sin(C+\frac{π}{3})$,…10分
又0$<C<\frac{π}{3}$,可得:$\frac{π}{3}$<C+$\frac{π}{3}$<$\frac{2π}{3}$,
∴$b+c=sin(C+\frac{π}{3})$$∈({\frac{{\sqrt{3}}}{2},1}]$,…12分
注:用均值不等式求解更易,$由(1){a^2}={b^2}+{c^2}+bc及a=\frac{{\sqrt{3}}}{2}$,得:$\frac{3}{4}={b^2}+{c^2}+bc={(b+c)^2}-bc$,…6分
从而:$\frac{3}{4}={b^2}+{c^2}+bc={(b+c)^2}-bc≥{(b+c)^2}-{(\frac{b+c}{2})^2}$,…10分
∴b+c≤1,…11分
又$b+c>a=\frac{{\sqrt{3}}}{2}$,
∴$\frac{{\sqrt{3}}}{2}<b+c≤1$.…12分.

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质,基本不等式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?
(1)两名女生必须相邻而站;
(2)4名男生互不相邻;
(3)若4名男生身高都不等,按从高到低的顺序站;
(4)老师不站中间,女生不站两端.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A=[-3,3],B=[-2,2],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;
(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于$\sqrt{2}$的概率.
(提示:可以考虑采用数形结合法)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等差数列{an}中,已知a2=2,a4=4
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求数列{bn}前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,则该几何体的体积为16+8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=1,a3=4.
(Ⅰ)若数列{an}是等差数列,求a11的值;
(Ⅱ)若数列{$\frac{1}{1+{a}_{n}}$}是等差数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调减区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位长度,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的函数,其导函数f'(x)满足f'(x)<f(x)(x∈R),则(  )
A.f(2)>e2f(0),f(2001)>e2001f(0)B.f(2)<e2f(0),f(2001)>e2001f(0)
C.f(2)>e2f(0),f(2001)<e2001f(0)D.f(2)<e2f(0),f(2001)<e2001f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”外接球的体积为$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

同步练习册答案