精英家教网 > 高中数学 > 题目详情
2.用抛掷1枚一角硬币和1枚五分硬币来模拟孟德尔的豌豆实验,设2枚硬币的正面对应DD,一角硬币的正面与五分硬币的反面对应Dd,一角硬币的反面与五分硬币的正面对应dD,2枚硬币的反面对应dd,抛掷这2枚硬币100次,记下出现DD,Dd,dD和dd的次数,考察你的结果是否基本符合1:1:1:1的比例.

分析 由题意,抛掷1枚一角硬币和1枚五分硬币,出现的可能是正正、正反、反正、反反,每一种情况的概率均为$\frac{1}{4}$,即可得出结论.

解答 解:由题意,抛掷1枚一角硬币和1枚五分硬币,出现的可能是正正、正反、反正、反反.
每一种情况的概率均为$\frac{1}{4}$,
∴抛掷这2枚硬币100次,记下出现DD,Dd,dD和dd的次数,结果基本符合1:1:1:1的比例.

点评 本题考查等可能事件的概率,考查学生利用数学知识解决实际问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求(1+2x)10的展开式中
(1)求二项式系数最大的项;
(2)求系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知(a-x)5=a0+a1x+a2x2+…+a5x5,若a2=270,则a=(  )
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在边长为1的正方形中随机撒1000粒豆子,有380粒落到阴影部分,据此估计阴影部分的面积为0.38.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知递增的等差数列{an}(n∈N*)的首项a1=1,且a1,a2,a4成等比数列,则数列{an}的通项公式an=n;a4+a8+a12+…+a4n+4=2n2+6n+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足a1=1,an+1=f($\frac{1}{{a}_{n}}$),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)令bn=$\frac{1}{{a}_{n-1}{a}_{n}}$ (n≥2),b1=3,Sn=b1+b2+…+bn,若Sn<$\frac{m-2007}{2}$对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且{an}满足:a1=3,Sn=2an+n(n∈N+
(1)求数列{an}的通项公式;
(2)设bn=(-1)n•log2(an-1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.将下列参数方程(t为参数)化成普通方程,并说明表示什么曲线:
(1)$\left\{\begin{array}{l}{x=\sqrt{{t}^{2}+2t+3}}\\{y=\sqrt{{t}^{2}+2t+2}}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=sint+cost}\\{y=sintcost}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x=t+\frac{1}{t}-1}\\{y=t-\frac{1}{t}+1}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{x=\frac{1-{t}^{2}}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$;
(5)$\left\{\begin{array}{l}{x=\frac{1-t}{1+t}}\\{y=\frac{2t}{1+t}}\end{array}\right.$;
(6)$\left\{\begin{array}{l}{x=\frac{2}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$.

查看答案和解析>>

同步练习册答案