精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x2x+1
,g(x)=(a+2)x+5-3a.
(1)求函数f(x)在区间[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的取值范围..
分析:(1)设0≤x1≤x2≤1,用定义证明f(x)在[0,1]上是增函数,由此能求出函数f(x)在区间[0,1]上的值域.
(2)记f(x),g(x)在区间[0,1]上的值域分别是A,B,由题意知A⊆B,根据实数a+2的取值进行分类讨论,能求出a的取值范围.
解答:解:(1)∵f(x)=
2x2
x+1

设0≤x1≤x2≤1,
则f(x1)-f(x2)=
2x12
x1+1
-
2x22
x2+1

=
2(x1-x2)(x1x2+x1+x2)
(x1+1)(x2+1)
<0

∴f(x1)<f(x2),
故f(x)在[0,1]上是增函数,
∴f(x)min=f(0)=0,
f(x)max=f(1)=1,
故函数f(x)在区间[0,1]上的值域为[0,1].
(2)∵g(x)=(a+2)x+5-3a,
记f(x),g(x)在区间[0,1]上的值域分别是A,B,
由题意知A⊆B,
由(1)知,A=[0,1],
当a>-2时,B=[g(0),g(1)]=[5-3a,7-2a],
5-3a≥1
7-2a≤0
,解得
5
3
≤a≤3

当a=2时,B={11},不合题意.
当a<-2时,B=[g(1),g(0)]=[7-2a,5-3a],则
5-3a≥1
7-2a≤0
,无解.
综上所述,a的取值范围是[
5
3
,3].
点评:本题考查函数的值域的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,注意分类讨论思想的应用,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1x2+2

(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若对一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
|x|+1
(x∈R)
,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)设函数f(x)=
2x+3
3x-1
,则f-1(1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x+2
,点A0表示原点,点An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夹角[其中
i
=(1,0)]
,设Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,则x0等于(  )

查看答案和解析>>

同步练习册答案