精英家教网 > 高中数学 > 题目详情
学习曲线是1936年美国廉乃尔大学T.P.Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的.已知某类学习任务的学习曲线为:f(t)=
3
4+a•2-t
•100%(其中f(t)为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足f(2)=60%.
(1)求f(t)的表达式,计算f(0)并说明f(0)的含义;
(2)若定义
f(t)
2t-1
为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间t∈(1,2)时,学习效率最佳.当学习效率最佳时,求学习效率指数相应的取值范围.
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)由f(t)=
3
4+a•2-t
•100%,及f(2)=60%代入可求a,进而可求f(t),f(0),f(0)表示某项学习任务在开始学习时已掌握的程度;
(2)令学习效率指数y=
f(t)
2t-1
,t∈(1,2)则y=
3
2(2t+1)
,利用函数的单调性,即可求学习效率指数相应的取值范围.
解答: 解:(1)∵f(t)=
3
4+a•2-t
•100%,且f(2)=60%
3
4+a•2-2
•100%=60%,可得a=4
∴f(t)=
3
4(1+2-t)
•100%(t≥0)
∴f(0)=37.5%
f(0)表示某项学习任务在开始学习时已掌握的程度为37.5%;
(2)令学习效率指数y=
f(t)
2t-1
,t∈(1,2)∴y=
3
2(2t+1)

∵y=
3
2(2t+1)
在(0,+∞)上为减函数,t∈(1,2)∴y∈(
3
10
1
2
)

故所求学习效率指数的取值范围是(
3
10
1
2
)
点评:本题考查函数在生产生活中的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+3x在点A,B处分别取得极大值和极小值.
(1)求A,B两点的坐标;
(2)过原点O的直线l若与f(x)的图象交于A,B两点,求|OA||OB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,
3
),
b
=(cos2x,sin2x),设函数f(x)=
a
b
,求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设f(x)=
e x-e -x
2
 
,g(x)=
ex+e-x
2
,证明:f(2x)=2f(x)•g(x);
(2)若xlog34=1,求4x+4-x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx-ax2,x>0
(1)当a=2时,函数f(x)的图象在点(1,f(1))处的切线方程;
(2)若在区间(2,3)内任取实数p,q(p>q)都有不等式
f(p)-f(q)
p-q
<1恒成立,求实数a的取值范围;
(3)若函数f(x)有两个极值点x1,x2(0<x1<x2),求证:f(x2)>-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n2+n
2
,n∈N*
(1)求数列{an}的通项公式; 
(2)设bn=2n+(-1)nan,求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

(1)求实数a的值及函数f(x)的单调区间;
(2)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*.n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人各进行3次射击,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
2
3

(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,水平放置的直三棱柱的侧棱长和底面边长均为2,正视图是边长为2的正方形,该三棱柱的侧视图面积为
 

查看答案和解析>>

同步练习册答案