精英家教网 > 高中数学 > 题目详情
甲、乙两人各进行3次射击,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
2
3

(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.
考点:离散型随机变量的期望与方差,互斥事件的概率加法公式,离散型随机变量及其分布列
专题:空间位置关系与距离
分析:(1)甲、乙两人射击命中的次数服从二项分布,由此能求乙至多击中目标2次的概率.
(2)由题意知z=0,1,2,3,分别求出相应的概率,由此能求出Z的分布列、数学期望和标准差.
解答: 解:(1)甲、乙两人射击命中的次数服从二项分布,
故乙至多击中目标2次的概率为1-
C
3
3
(
2
3
)3
=
19
27

(2)由题意知z=0,1,2,3,
P(z=0)=
C
0
3
(
1
2
)3
=
1
8

P(z=1)=
C
1
3
(
1
2
)3
=
3
8

p(z=2)=
C
2
3
(
1
2
)3
=
3
8

P(z=3)=
C
3
3
(
1
2
)3=
1
8

z的分布列为:
 z 0 1 2 3
 P 
1
8
 
3
8
 
3
8
 
1
8
E(z)=
1
8
+1×
3
8
+2×
3
8
+3×
1
8
=
3
2

D(z)=(0-
3
2
2×
1
8
+(1-
3
2
2×
3
8
+(2-
3
2
2×
3
8
+(3-
3
2
2×
1
8
=
3
4

D(z)
=
3
2
点评:本题考查概率的求法,考查离散型随机变量ξ的分布列、数学期望和标准差的求法,解题时要认真审题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b∈R,函数f(x)=ax2+
b
x
(x∈R,x≠0)在x=1时有极小值
3
2

(1)求a,b的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

学习曲线是1936年美国廉乃尔大学T.P.Wright博士在飞机制造过程中,通过对大量有关资料、案例的观察、分析、研究,首次发现并提出来的.已知某类学习任务的学习曲线为:f(t)=
3
4+a•2-t
•100%(其中f(t)为掌握该任务的程度,t为学习时间),且这类学习任务中的某项任务满足f(2)=60%.
(1)求f(t)的表达式,计算f(0)并说明f(0)的含义;
(2)若定义
f(t)
2t-1
为该类学习任务在t时刻的学习效率指数,研究表明,当学习时间t∈(1,2)时,学习效率最佳.当学习效率最佳时,求学习效率指数相应的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,CB是⊙O的直径,AP是⊙O的切线,P为切点,AP与CB的延长线交于点P,若AP=8,PB=4,求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游公司有自行车300辆出租,每辆车租用费用为20元,每天都能全部租出.旅游旺季公司要提高租金.如果每辆自行车租用费用每增加1元,出租数就会减少5辆.若不考虑其他因素,旅游公司将每辆车租金提高x元,每天的租金总收入y元.
(1)写出y与x之间的函数关系式;
(2)旅游公司将每辆车租金提高到多少元时,每天的租金总收入最高?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y),A(-1,0),向量
PA
与向量
m
=(1,1)共线.
(1)求y关于x的函数;
(2)已知点B(1,2),请在直线y=3x上找一点C,使得
PB
PC
>0时x的取值集合为{x|x<-1或x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|log2(x-1)<1},集合B={x|x2-ax-2a2<0,a∈R},
(1)当a=1时,求集合A∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a,b(a≤b),
有下列四个命题:
①af(a)≤bf(b);
②af(a)≥bf(b);
③af(b)≥bf(a);
④af(b)≤bf(a)中,
真命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

与双曲线
x2
16
-
y2
9
=1有共同渐近线,且过点(4
2
,6)的双曲线的标准方程是
 

查看答案和解析>>

同步练习册答案