精英家教网 > 高中数学 > 题目详情
某旅游公司有自行车300辆出租,每辆车租用费用为20元,每天都能全部租出.旅游旺季公司要提高租金.如果每辆自行车租用费用每增加1元,出租数就会减少5辆.若不考虑其他因素,旅游公司将每辆车租金提高x元,每天的租金总收入y元.
(1)写出y与x之间的函数关系式;
(2)旅游公司将每辆车租金提高到多少元时,每天的租金总收入最高?
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)总收入=自行车租金*租出自行车数,
(2)y是关于x的二次函数利用配方法就可以求出最大值.
解答: 解:(1)由题知y=(20+x)(300-5x)
即y=-5x2+200x+6000(x∈[0,60];
(2)∵y=-5(x-20)2+8000,
∴x=20时ymax=8000
所以旅游公司将每辆车租金提高到40元时,每天的租金总收入最高.
点评:本题考查根据实际问题选择函数类型,通过实际问题,构建函数模型,考查配方法求二次函数的最大值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

k为何值时,直线l1:y=kx+3k-2与直线l2:x+4y-4=0的交点在第一象限?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx-ax2,x>0
(1)当a=2时,函数f(x)的图象在点(1,f(1))处的切线方程;
(2)若在区间(2,3)内任取实数p,q(p>q)都有不等式
f(p)-f(q)
p-q
<1恒成立,求实数a的取值范围;
(3)若函数f(x)有两个极值点x1,x2(0<x1<x2),求证:f(x2)>-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=lnx-ax+1在x=2处的切线斜率为-
1
2

(1)求实数a的值及函数f(x)的单调区间;
(2)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N*.n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列各式的值
(1)(0.064) -
1
3
-(-
1
8
0+16 
3
4
+(0.25) 
1
2

(2)log510+2log25
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人各进行3次射击,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
2
3

(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C的对边分别a、b、c,a=1,A+C=2B,△ABC的面积S=
3
3
4

(1)求b的长;
(2)求sin(
π
2
-2C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x是锐角},B=(0,1),从A到B的映射是“求正弦”,则与A中元素60°相对应的B中的元素是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-2bx+3a在区间(0,1)内有极小值,则实数b的取值范围是
 

查看答案和解析>>

同步练习册答案