精英家教网 > 高中数学 > 题目详情
k为何值时,直线l1:y=kx+3k-2与直线l2:x+4y-4=0的交点在第一象限?
考点:两条直线的交点坐标
专题:直线与圆
分析:联立方程组可得交点坐标,由第一象限可得k的不等式组,解不等式组可得.
解答: 解:联立方程
y=kx+3k-2
x+4y-4=0

解得
x=
12-12k
1+4k
y=
7k-2
1+4k

∵交点在第一象限,∴
x=
12-12k
1+4k
>0
y=
7k-2
1+4k
>0

解不等式组可得:
2
7
<k<1
点评:本题考查直线的交点,涉及不等式组的解集,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在20世纪30年代,地震科学家制定了一种表明地震能量大小的尺度,就是利用测震仪衡量地震的能量等级,等级M与地震的最大振幅A之间满足函数关系M=lgA-lgA0,(其中A0表示标准地震的振幅)
(1)假设在一次4级地震中,测得地震的最大振幅是10,求M关于A的函数解析式;
(2)地震的震级相差虽小,但带来的破坏性很大,计算8级地震的最大振幅是5级地震最大振幅的多少倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an},前n项和为Sn=n2+Bn,a7=14.
(1)求B、an
(2)设cn=n•2an,求Tn=c1+c2+…+cn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,且an和Sn满足Sn=
1
2
(an2+an),n∈N*
(1)求{an}的通项公式;
(2)数列{bn}满足bn=(
1
2
nan,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn+
n
2n
对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a-
2
2x+1
,x∈R
(1)若函数f(x)为奇函数,求实数a的值;
(2)探索函数f(x)的单调性;
(3)若f(logb(2t-t2))>f(logb(2-t))(b>0且b≠1),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,函数f(x)=ax2+
b
x
(x∈R,x≠0)在x=1时有极小值
3
2

(1)求a,b的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线为6x+y+4=0.
(1)求a,b,c的值;
(2)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在函数f(x)=mx3-x的图象上以N(1,n)为切点的切线的倾斜角为
π
4

(Ⅰ)求m、n的值;
(Ⅱ)是否存在最小的正整数k,使得不等式f(x)≤k-2013对于x∈[-1,3]恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;
(Ⅲ)求证:|f(sinx)+f(cosx)|≤2f(t+
1
2t
),(x∈R,t>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游公司有自行车300辆出租,每辆车租用费用为20元,每天都能全部租出.旅游旺季公司要提高租金.如果每辆自行车租用费用每增加1元,出租数就会减少5辆.若不考虑其他因素,旅游公司将每辆车租金提高x元,每天的租金总收入y元.
(1)写出y与x之间的函数关系式;
(2)旅游公司将每辆车租金提高到多少元时,每天的租金总收入最高?

查看答案和解析>>

同步练习册答案