精英家教网 > 高中数学 > 题目详情
已知P(x,y),A(-1,0),向量
PA
与向量
m
=(1,1)共线.
(1)求y关于x的函数;
(2)已知点B(1,2),请在直线y=3x上找一点C,使得
PB
PC
>0时x的取值集合为{x|x<-1或x>1}.
考点:平面向量数量积的运算,函数解析式的求解及常用方法,平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:(1)利用向量共线定理即可得出;
(2)利用向量的数量积运算、一元二次不等式的解法即可得出.
解答: 解:(1)
PA
=(-1-x,-y).
∵向量
PA
与向量
m
=(1,1)共线,
∴-y-(-1-x)=0,化为y=x+1.
(2)设C(m,3m),P(x,x+1).
PB
=(1-x,1-x),
PC
=(m-x,3m-x-1),
PB
PC
=(1-x)(m-x)+(1-x)(3m-x-1)=(1-x)(4m-2x-1)>0,
化为(x-1)(2x-4m+1)>0.
PB
PC
>0时x的取值集合为{x|x<-1或x>1}.
∴4m-1=-1,解得m=0.
∴C(0,0).
点评:本题考查了向量共线定理、向量的数量积运算、一元二次不等式的解法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
1
2
x2-lnx.
①求函数f(x)的值域;
②讨论方程
1
2
x2-lnx=m的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n2+n
2
,n∈N*
(1)求数列{an}的通项公式; 
(2)设bn=2n+(-1)nan,求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinA+sinB=
2
sinC,且△ABC的周长为
2
+1.
(1)求边AB的长;
(2)若△ABC的面积为
1
6
sinC,求角C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人各进行3次射击,甲每次击中目标的概率为
1
2
,乙每次击中目标的概率为
2
3

(1)求乙至多击中目标2次的概率;
(2)记甲击中目标的次数为Z,求Z的分布列、数学期望和标准差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+2,g(x)=ax+2
(1)若关于x的方程f(x)=g(x)在(1,2)内恰有一解,求a的取值范围;
(2)设h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,求h(x)的最小值;
(3)定义:已知函数T(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数T(x)在[m,n](m<n)上具有“DK”性质.如果f(x)在[a,a+1]上具有“DK”性质,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:x-y+4=0与l2:2x+y+2=0的交点P,求满足下列条件的直线方程.
(1)过点P且过原点的直线方程;
(2)过点P且平行于直线l3:x-2y-1=0的直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

一只蚂蚁在三边长分别为3、4、5的三角形面内爬行,某时间该蚂蚁距离三角形的三个顶点的距离均超过1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+asinx.
(1)当a=2时,求函数f(x)的值域;
(2)若函数f(x)的最小值为-6,求实数a的值;
(3)若a∈R,求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案