精英家教网 > 高中数学 > 题目详情
2.已知函数y=f(x),x∈R,有下列4个命题:
①若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于(1,0)中心对称;
②若f(x)为奇函数,且f(x)关于直线x=1对称,则4为函数f(x)一个周期.
③y=f(x-1)与y=f(1-x)的图象关于直线x=0对称;
④若f(1-3x)=f(1+3x),则f(x)的图象关于直线x=1对称;
其中正确命题是①②④. (写出命题编号)

分析 ①由f(2+x)=-f(x)得f(x)=-f(2-x)  令x=x+2,带入原式,有f(x)=-f(x-2),又f(x)为偶函数,有f(x-2)=f(2-x)得到对称中心点.
②由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1-x),即有f(-x)=f(x+2).又函数f(x)是定义在R上的奇函数,故f(x+2)=-f(x),得到f(x)是周期为4的周期函数.
③此两函数都是抽象函数,可以分别看作函数y=f(x)与y=f(-x)的图象向右移了一个单位而得到,由此问题变化为研究f(x)与y=f(-x)的图象的对称性,再由平移规律得出函数y=f(x-1)与y=f(1-x)的图象的对称轴即可④若y=f(x)为奇函数,且f(x)=f(-x-2),则y=f(x)的图象关于直线x=1对称.
④令t=1+3x,可得3x=t-1,代入f(1+3x)=f(1-3x)得f(t )=f(2-t),继而得到命题成立.

解答 解:①由f(2+x)=-f(x)得f(x)=-f(2-x)  令x=x+2,带入原式,有f(x)=-f(x-2)
因为f(x)为偶函数,有f(x-2)=f(2-x)
所以f(x)=-f(2-x),关于(1,0)中心对称.①正确.
②由函数f(x)的图象关于直线x=1对称,
有f(x+1)=f(1-x),即有f(-x)=f(x+2).
又函数f(x)是定义在R上的奇函数,有f(-x)=-f(x).故f(x+2)=-f(x).
从而f(x+4)=-f(x+2)=f(x).即f(x)是周期为4的周期函数.②正确.
③:∵f(x)与y=f(-x)的图象关于直线x=0对称
又函数y=f(x-1)与y=f(1-x)的图象可以由f(x)与y=f(-x)的图象向右移了一个单位而得到,
∴函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称,③错误.
④令t=1+3x,可得3x=t-1,代入f(1+3x)=f(1-3x)得f(t )=f(2-t)
由于$\frac{t+2-t}{2}=1$,即关于t=1对称,所以y=f(x)的图象关于直线x=1对称,故④是命真题.
故答案为:①②④.

点评 本题考查函数奇偶性的性质,及对称中心点和对称轴的求解方法,本题是一个中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex•cosx,g(x)=x•sinx,其中e为自然对数的底数.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若对任意x∈[-$\frac{π}{2}$,0],不等式f(x)≥g(x)•a恒成立,求实数a的取值范围;
(3)试探究x∈[-$\frac{π}{2}$,$\frac{π}{2}$]时,方程f(x)-g(x)=0解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数g(x)=$\frac{2m}{(x+1)|x-m|}$,x∈[1,2],g(x)≥$\frac{2x}{x+1}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式:|x-1|>2x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=$\frac{{e}^{x}}{{x}^{2}}$-k($\frac{2}{x}$+lnx),k≤0,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若sin2α=a,cos2α=b,且tan($\frac{π}{4}$+α)有意义,则tan($\frac{π}{4}$+α)=(  )
A.$\frac{1+a+b}{1-a+b}$B.$\frac{a+1-b}{a-1+b}$C.$\frac{1+a}{b}$D.$\frac{b}{1-a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解方程:$\frac{3x}{2x-a}$+$\frac{6{x}^{2}}{4{x}^{2}-{a}^{2}}$=$\frac{2x-a}{2x+a}$(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设y=f(t)是某地一天的温度y(℃)关于时间t(时)的函数,其中t∈[0,24),通常情况下,函数y=f(t)的图象可以近似地看成函数y=Asin(ωt+φ)+b的图象.2015年6月中旬某地连续几天最高温度都出现在14时,最高温度为32℃,最低温度都出现在凌晨2时,最低温度为16℃.
(Ⅰ)请求出该地这几天中每天的温度函数y=Asin(ωt+φ)+b(A>0,ω>0,|φ|<0,t∈[0,24))的表达式;
(Ⅱ)根据某种植物的生长特征个,如果温度低于20℃,就要采取升温措施,请问该地这几天中每天何时段内应采取升温措施?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xcosx-sinx-x2+1.
(1)求曲线y=f(x)在点(π,f(π))处的切线方程;
(2)若曲线y=f(x)与直线y=b有两个不同的交点,求b的取值范围.

查看答案和解析>>

同步练习册答案