精英家教网 > 高中数学 > 题目详情
某校开设A类课3门,B类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有
(  )
A、15种B、30种
C、45种D、90种
考点:排列、组合及简单计数问题
专题:排列组合
分析:两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果.
解答: 解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C31C52种不同的选法;
②A类选修课选2门,B类选修课选1门,有C32C51种不同的选法.
∴根据分类计数原理知不同的选法共有C31C52+C32C51=30+15=45种.
故选:C.
点评:本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C83-C33-C53=45.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(1+x)•(2-x)10=b0+b1(x-1)+b2(x-1)2+…+b11(x-1)11,则b1+b2+…b11=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l的参数方程为
x=-
1
2
t
y=2+
3
2
t
(t为参数),若以原点O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4cosθ,设M是圆C上任一点,连结OM并延长到Q,使|OM|=|MQ|.
(Ⅰ)求点Q轨迹的直角坐标方程;
(Ⅱ)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,e4
D、(e4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知棱柱ABCD-A1B1C1D1的底面是正方形,且AA1⊥平面ABCD,E为棱AA1的中点,F为线段BD1的中点.
(1)证明:EF∥平面ABCD;    
(2)证明:EF⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是R上的减函数,且函数y=f(x-1)的图象关于点A(1,0)对称.设动点M(x,y),若实数x,y满足不等式 f(x2-8y+24)+f(y2-6x)≥0恒成立,则
OA
OM
的取值范围是(  )
A、(-∞,+∞)
B、[-1,1]
C、[2,4]
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sinωxcosωx+
3
sin2ωx-
3
2
(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.
(Ⅰ)求ω及m的值;
(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,其中a1=1,a7=13
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和,当不等式λTn<n+8•(-1)n(n∈N*)恒成立时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校为了解高一年段学生的体重情况,先按性别分层抽样获取样本,再从样本中提取男、女生体重数据,最后绘制出如下图表.已知男生体重在[50,62)的人数为45.

女生体重数据频数分布表 
 体重(公斤)[36,40)[40,44)[44,48)[48,52)[52,56)[56,60)
 频数18 10 
(Ⅰ)根据以上图表,计算体重在[56,60)的女生人数x的值;
(Ⅱ)若从体重在[66,70)的男生和体重在[56,60)的女生中选取2人进行复查,求男、女生各有一人被选中的概率;
(Ⅲ)若体重在[50,54),[54,58),[58,62)的男生人数比为3:5:7,试估算高一年段男生的平均体重.

查看答案和解析>>

同步练习册答案