精英家教网 > 高中数学 > 题目详情
已知一组数1,1,2,3,5,8,x,21,34,55,按这组数规律,x应为(  )
A、11B、12C、13D、14
考点:归纳推理
专题:推理和证明
分析:由数据可发现从第三项起每一项都等于前两项的和,由此规律即可求出x的值.
解答: 解:由题意得,一组数1,1,2,3,5,8,x,21,34,55,
则2=1+1,3+1+2,5=2+3,8=3+5,即从第三项起每一项都等于前两项的和,
所以x+5+8=13,
故选:C.
点评:本题考查了归纳推理,难点在于发现其中的规律,考查观察、分析、归纳能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3男和3女站一排,3女不相邻,男甲不站两端,有几种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角θ的终边过点P(-
3
,1),那么tan(2kπ+θ)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log0.5(x2-4)的单调增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰梯形ABCD,AB∥CD,DE⊥AB,CF⊥AB,AE=2,沿DE,CF将梯形折叠使A,B重合于A点(如图),G为AC上一点,FG⊥平面ACE.

(Ⅰ)求证:AE⊥AF;
(Ⅱ)求DG与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将∠B=
π
3
,边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角B-AC-D,若θ∈[
π
3
3
],M、N分别为AC、BD的中点,则下面的四种说法:
①AC⊥MN;
②DM与平面ABC所成的角是θ;
③线段MN的最大值是
3
4
,最小值是
3
4

④当θ=
π
2
时,BC与AD所成的角等于
π
2

其中正确的说法有
 
(填上所有正确说法的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C1的参数方程为:
x=4cosφ
y=3sinφ
(φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ=2cosθ
(1)去曲线C1的直角坐标方程;
(2)已知点M是曲线C1上任意一点,点N是曲线C2上任意一点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,且对一切实数x,|
a
+x
b
|≥|
a
+
b
|恒成立,则
a
b
的夹角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,已知AA1=1,AD=
3
,则异面直线A1D1与B1C所成角的大小为(  )
A、60°B、45°
C、30°D、90°

查看答案和解析>>

同步练习册答案