精英家教网 > 高中数学 > 题目详情
4.已知x>0,y>0且x+y=4,若不等式$\frac{1}{x}$+$\frac{4}{y}$≥m恒成立,则m的取值范围是(  )
A.{m|m>$\frac{9}{4}$}B.{m|m≥$\frac{9}{4}$}C.{m|m<$\frac{9}{4}$}D.{m|m≤$\frac{9}{4}$}

分析 利用“乘1法”与基本不等式的性质求解$\frac{1}{x}$+$\frac{4}{y}$的最小值可得答案.

解答 解:x>0,y>0且x+y=4,
则:$\frac{x}{4}+\frac{y}{4}=1$,
那么($\frac{1}{x}$+$\frac{4}{y}$)($\frac{x}{4}+\frac{y}{4}$)=$\frac{1}{4}$+1$+\frac{x}{y}+\frac{y}{4x}$≥$\frac{5}{4}$$+2\sqrt{\frac{x}{y}•\frac{y}{4x}}$=$\frac{9}{4}$,当且仅当2x=y=$\frac{8}{3}$时取等号.
∴$\frac{1}{x}$+$\frac{4}{y}$的最小值为$\frac{9}{4}$.
要使不等式$\frac{1}{x}$+$\frac{4}{y}$≥m恒成立,
∴m$≤\frac{9}{4}$.
故选D.

点评 本题考查了“乘1法”与基本不等式的性质的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=log2(x+1).
(1)求当x<0时,函数的解析式;
(2)用分段函数形式写出函数f(x)在R上的解析式,并在坐标系中画出f(x)的草图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正四棱柱ABCD-A1B1C1D1中,AB=2,BB1=4,则BB1与平面ACD1所成角的正弦值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=x(x-m)2在x=1处取得极小值,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{4}$+y2=1的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的有(  )
(1)m?α,n?α,m∥β,n∥β⇒α∥β  (2)n∥m,n⊥α⇒m⊥α
(3)α∥β,m?α,n?β⇒m∥n         (4)m⊥α,m⊥n⇒n∥α
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$+$\overrightarrow{b}$的坐标为(  )
A.(1,5)B.(1,1)C.(3,1)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=(x2-4)(x-a),a为实数,f′(1)=0,则f(x)在[-2,2]上的最大值是(  )
A.$\frac{9}{2}$B.1C.$\frac{3}{5}$D.$\frac{50}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}是递增的等比数列,若a2=3,a4-a3=18,则a5的值为81;{an}的前5项的和S5的值为121.

查看答案和解析>>

同步练习册答案