精英家教网 > 高中数学 > 题目详情
16.已知定积分${∫}_{0}^{6}$f(x)dx=8,则f(x)为偶函数,则${∫}_{-6}^{6}$f(x)dx=(  )
A.0B.16C.12D.8

分析 根据定积分的几何意义知,定积分的值∫-66f(x)dx是f(x)的图象与x轴所围成的平面图形的面积的代数和,结合偶函数的图象的对称性即可解决问题.

解答 解:原式=${∫}_{-6}^{0}$f(x)dx+∫06f(x)dx.
∵原函数为偶函数,∴在y轴两侧的图象对称,
∴对应的面积相等,则∫-66f(x)dx=8×2=16.
故选B.

点评 本题主要考查定积分以及定积分的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(x),若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数y=f(x)的局部对称点.
(1)若a、b∈R且a≠0,证明:函数f(x)=ax2+bx-a必有局部对称点;
(2)若函数f(x)=2x+c在定义域[-1,2]内有局部对称点,求实数c的取值范围;
(3)若函数f(x)=4x-m•2x+1+m2-3在R上有局部对称点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等腰直角三角形ABC的斜边为$\sqrt{2}$,且AB⊥AC,E,F分别是AB,AC上的动点,AE=mAB(0≤m<1),AF=nAC(0<n<1),m+n=1,设BF与CE交点为P,且记d为AP取到最值时的EF的长度,则AP•d的取值范围是(  )
A.$[\frac{1}{3},\frac{{\sqrt{2}}}{2})$B.$[\frac{{\sqrt{2}}}{3},\frac{{\sqrt{2}}}{2})$C.$[\frac{{\sqrt{5}}}{6},\frac{{\sqrt{2}}}{2})$D.$[\frac{{\sqrt{6}}}{7},\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l过点P(1,2),斜率k=2
(1)写出直线l的方程;   
(2)判断点A(1,-2)是否在直线l上?
(3)直线n过点B(2,9)且平行于直线l,求直线n的方程;
(4)求直线l与直线n的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是正方体平面展开图,在这个正方体中
①BM与ED平行;
②CN与BE是异面直线;
③CN与BM成60°角;
④EM与BN垂直.
以上四个命题中,正确命题的序号是(  )
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为集合A,函数y=$\frac{\sqrt{2x+4}}{x-3}$的定义域为集合B.则集合(∁UA)∩(∁UB)={x|x<-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.二次函数y=ax2+bx+c图象如图所示:
①bc>0;
②2a-3c<0; 
③2a+b>0;
④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;
⑤a+b+c>0; 
⑥当x>1时,y随x增大而减小
以上结论正确的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(2+i)z=3+4i,则z=(  )
A.2+iB.-2-iC.2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)对于任意x∈R满足f(x)=f(-x)和f(x)=f(2-x),在区间[0,1]上,函数f(x)单调递增,则有ω=π,φ=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案