分析 称求出在直角坐标中点A和点B的坐标,由此利用两点间的距离公式能求出A,B两点间的距离.
解答 解:∵在极坐标系中,$A(3,\frac{π}{3}),B(1,\frac{4π}{3})$,
∴在直角坐标中,A($\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$),B(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),
∴A,B两点间的距离|AB|=$\sqrt{(\frac{3}{2}+\frac{1}{2})^{2}+(\frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2})^{2}}$=4.
故答案为:4.
点评 本题考查点的极坐标和直角坐标的互化及两点间距离的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com